National Repository of Grey Literature 124 records found  beginprevious110 - 119next  jump to record: Search took 0.01 seconds. 
Finite element modelling of pathological changes in human vocal folds tissue and their influence on videokymograph
Martínek, Tomáš ; Matug, Michal (referee) ; Švancara, Pavel (advisor)
Master´s thesis deals with creating planar computational model of human folds, involving fluid-structure interaction. With this model, the influence of changes in vocal folds tissue layers (stiffness, thickness) and their effects on the videokymograph image are studied. Analysis of the results also deals with the evaluation of pressure at selected points below, between and above the vocal folds. The results indicate a possible similarity with the behavior of human vocal folds with pathology. Background research of vocal folds function, an overview of vocal folds pathology and summary of computational models are included.
Influence of the surrounding tissue on the stresses in brain arterial aneurysms
Lipenský, Zdeněk ; Burša, Jiří (referee) ; Polzer, Stanislav (advisor)
This thesis is focused on stress in brain aneurysms. It consists of three parts. First part is aimed for gaining information about the topic from scientific resources. Next part consists of analyses of geometry of cerebral aneurysms on the computed wall stress. Analyses are performed on four basic geometrical models and results are being discussed. The risky areas in each investigated shape have been identified as well as the comparisons of stress between those shapes have been performed and the most dangerous shape among investigated shapes has been determined. Third part investigates the influence of surrounding tissue on the brain aneurysm. Conclusion of this thesis is that brain gray tissue has positive yet negligible effect on the computed wall stress.
Stability analysis of swinging props turbines
Bukovský, Petr ; Navrátil, Petr (referee) ; Skalka, Petr (advisor)
Master thesis deals with a computing simulation of two props turbines lines. The thesis output is gaining maximum possible load, at which a commencement of deformation stability critical state for various geometrical imperfections has not arisen yet. The calculation has been done by FEM in two different ways: linear solution (using a calculation conversion into eigenbuckling) and nonlinear solution (using a FEM deformation option). Result analysis compares both methods outcomes. Safety factor for the props operation has been proposed taking into consideration known influences on operating state.
Vibration Propagation Analysis of Coupled Structure Acoustic Space
Kostelník, Jan ; Pellant, Karel (referee) ; Novotný, Pavel (advisor)
The aim of this Master’s thesis Vibration Propagation Analysis of Coupled Structure Acoustic Space is to analyze vibration propagation in combustion engine, from combustion space through solid structure to fluid surroundings. Then analyze the noise increase as pressure changing in fluid space around the solid structure. There was made a analyze of single piston engine in different frequency and piston location. A simulation of distribution of a pressure waves was made in an ANSYS application.
Application of tensegrity structures in modelling of mechanical behaviour of smooth muscle cells
Bauer, David ; Fuis, Vladimír (referee) ; Burša, Jiří (advisor)
The master’s thesis deals with the computational modelling of the mechanical testing of isolated smooth muscle cells. The main aims are to create computational model of a cell, to simulate single-axis tensile test and to modify the model so that the model reflects real mechanical response. The model of the cell includes cytoplasm, nucleus, cell membrane and cytoskeleton which is modelled as a tensegrite structure. On this model the tensile test was simulated in case of the cell with cytoskeleton and the cell with distributed the cytoskeleton. Force-elongation curves, which were obtained from this simulation, were compared with experimental data which were taken from literature. Tensile properties were measured on freshly isolated cells from rat thoracic aorta, cultured cells, and cells treated with cytochalasin D to disrupt their actin filaments. It was found that the cytoskeleton influence on the cell load in computational model was smaller than in the real cell. Therefore the model was modified by changing material propreties and geometry so that the model of the cell corresponded with the different types of experimentally measured cells.
Evaluation of elastic parameters for models of isolated cells
Krbálek, Jaroslav ; Fuis, Vladimír (referee) ; Burša, Jiří (advisor)
This diploma thesis focuses on computational modeling of the cell mechanical tests. The goal of this thesis is to build a cell model and to simulate compression test on this model. If necessary, the model should be adjusted so the model reflects real cell behavior. It was created the cell model reflecting cytoplasm, nucleus, membrane and cell cytoskeleton. Cytoskeleton was modeled as tensegrity structure. After this, the pressure test was simulated on this model. The behavior of the cell model and real cell was compared using the stress force. The stress force - cell deformation curve was markedly different for the cell model and the real cell. For this reason, the cytoplasm material model was adjusted. The difference between the curves was acceptable after this modification. It was found during computations that the cytoskeleton model influence on the cell load is minimal. These results does not reflects real cell behavior, which means that the model is considered inadequate for performing stress load simulation.
Computational modelling of noise inside cabin of aircraft VUT 100 Cobra
Prnka, Jiří ; Houfek, Lubomír (referee) ; Švancara, Pavel (advisor)
This master’s thesis deals with the computational simulation of low-frequency noise inside the cabin of small commercial airplane VUT 100 Cobra. For this low-frequncy range deterministic methods: Final Element Method (FEM) and Boundary Element Method (BEM) are used for simulation of the dynamic behaviour of the object. FEM has been used to compute eigenmodes and eigenfrequences of the structure of the aeroplane cabin and of the acoustic space inside cabin. Then response to harmonic excitation of engine represented by unit forces in place of contact has been computed. Obtained velocities on the surface of the cabin are then used as the basis for the noise calculation inside the cabin using BEM. After that effect of some construction modifications on sound level inside cabin are evaluated by computational modelling.
Computational modelling of mechanical tests of isolated cells
Sůkal, Petr ; Fuis, Vladimír (referee) ; Burša, Jiří (advisor)
The master’s thesis deals with computational modelling of mechanical testing of isolated cells, particularly of single-axle tensile test. The aim is to imitate the real deformed shape known from experiments. At first, the structure of each cell component is described and analyzed according to their significance for mechanical behavior. The outline of basic mechanical tests used for cell testing is discussed next. A structural computational model comprising all components significant for mechanical purposes is created for the modelling. Those components are nucleus, cytoplasm, cell membrane and cytoskeleton. Due to the problems with convergence the model was divided into two parts. The first one treats separately the shape of cytoskeleton and the second one treats the shape of communicating components (nucleus, cytoplasm and cell membrane). Both of those partial models succeed in reaching the deformations according to the experiments.
Computational modelling of stress-strain states in tyres
Lavický, Ondřej ; Profant, Tomáš (referee) ; Burša, Jiří (advisor)
Work occupies computational modelling mechanical behavior elastomers and composits with rubber matrix and their utilization for compute model of tire creation. MATADOR tire 165/65 R13 Axisymetric 2D model was created in two geometric variants. For the computational modeling is applying the Finite element method (FEM). The model was in different variants distinctive grade of modeling material. At first was done inner pressure analyst impact on deformation of each of model. Then was count influence on tire load with angular velocity meanwhile with inner pressure. The impact thickness of tire protector layer on global deformation tyre casing was verified too.
Strain-stress analysis of pathological hip joint
Stodola, Martin ; Florian, Zdeněk (referee) ; Návrat, Tomáš (advisor)
This work deals with stress-strain analysis pathological hip joint. In its introduction a research study from accessible literature sources is carried out. It covers contemporary state of scientific studies, anatomy of single components hip joint, their material properties, ways and magnitudes of loadings and most often FE model used. With use of all these informations, computational system ANSYS and gained CT scans, a model of geometry of pelvis and femur is created. Subsequently, the complete computational model o pathological hip point is compiled. On this model computational solution is executed stress-strain and sensitivity analysis. Subsequently, surgery operation is simulated on this model and it is executed stress-strain analysis. These analyses are compared with analysis of physiological hip joint.

National Repository of Grey Literature : 124 records found   beginprevious110 - 119next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.