National Repository of Grey Literature 18 records found  previous11 - 18  jump to record: Search took 0.01 seconds. 

Computational Analysis Of Dynamic Behaviour Of Journal Bearings
Rak, Vladimír ; Kamenický, Ján (referee) ; Zapoměl, Jaroslav (referee) ; Pochylý, František (referee) ; Malenovský, Eduard (advisor)
This work deals with computational modelling of static and dynamic analyses of journal bearings, with analyses of stability of oil-film motion and analyses of response of the rotor assemblies. At our workplace a new theoretical approach to the modelling of the static and dynamic behaviour of the rigid rotating body in liquid is used. The approach is based on the application of the Navier-Stokes motion eq., equation of continuity and boundary conditions eqs. It is possible to separate the motion of the rigid body and liquid from each other using suitable transformation relations and then it is also possible to separate the stationary and nonstationary motions from each other. A method of control volumes is used for these analyses. The real Bézier body is used for the description of the geometrical configuration and also for the approximation of velocity and pressure functions. Combined the ALE (Arbitrary Lagrange-Euler) method is used, because it´s necessary to generate a new net (to perform new meshing) for a change of the shaft position. The additional effects of the liquid (additional mass, stiffness and damping), which we solved in dynamic analysis, are the function of the single parameter only – the shaft-centre position. There is a large advantage in comparison with the standard approach, which is based on application of the Reynolds liquid eq. Author solving the models of the long and short journal bearing with different geometry, especially the elliptical and cylindrical bearings, with incompressible and compressible journal bearing liquid. If the journal bearing problem is solved, it is possible to include the additional effect of the liquid to the right side of the motion equation of a model rotor assembly. Author analyze a model rotor assemblies with two degrees of freedom, which is supported inside of the two journal bearings on the ends of the rotor (Jeffcott rotor assembly). Author modelling and solveing a response of the model rotor assembly on the forced steady-state vibrations, which was actuating by the unbalanced matter.

Computational Analysis Of Dynamic Behaviour Of Journal Bearings
Rak, Vladimír ; Kamenický, Ján (referee) ; Pochylý, František (referee) ; Zapoměl, Jaroslav (referee) ; Malenovský, Eduard (advisor)
This work deals with computational modelling of static and dynamic analyses of journal bearings, with analyses of stability of oil-film motion and analyses of response of the rotor assemblies. At our workplace a new theoretical approach to the modelling of the static and dynamic behaviour of the rigid rotating body in liquid is used. The approach is based on the application of the Navier-Stokes motion eq., equation of continuity and boundary conditions eqs. It is possible to separate the motion of the rigid body and liquid from each other using suitable transformation relations and then it is also possible to separate the stationary and nonstationary motions from each other. A method of control volumes is used for these analyses. The real Bézier body is used for the description of the geometrical configuration and also for the approximation of velocity and pressure functions. Combined the ALE (Arbitrary Lagrange-Euler) method is used, because it´s necessary to generate a new net (to perform new meshing) for a change of the shaft position. The additional effects of the liquid (additional mass, stiffness and damping), which we solved in dynamic analysis, are the function of the single parameter only – the shaft-centre position. There is a large advantage in comparison with the standard approach, which is based on application of the Reynolds liquid eq. Author solving the models of the long and short journal bearing with different geometry, especially the elliptical and cylindrical bearings, with incompressible and compressible journal bearing liquid. If the journal bearing problem is solved, it is possible to include the additional effect of the liquid to the right side of the motion equation of a model rotor assembly. Author analyze a model rotor assemblies with two degrees of freedom, which is supported inside of the two journal bearings on the ends of the rotor (Jeffcott rotor assembly). Author modelling and solveing a response of the model rotor assembly on the forced steady-state vibrations, which was actuating by the unbalanced matter.

Design of Electric Scooter for Urban Mobility
Maca, Jakub ; Chorý, Tomáš (referee) ; Křenek, Ladislav (advisor)
The main aim of this thesis is to design electric scooter, which is ideally adapted for urban mobility and which will be a practical, attractive and environmental friendly alternative to the car with a combustion engine. Emphasis is given to proposal of ergonomic, aesthetic and functional solution of the system, which makes that scooter can be folded into a mobile compact shape. Folded scooter can be carried at public transportation vehicles and park right at home or in the office. The unique design and practical features of a scooter should be attractive not only in terms of personal mobility, but also as a utility vehicle for private companies and public institutions.


Experimental study of friction and lubrication in THR
Urban, Filip ; Čermák, Jan (referee) ; Vrbka, Martin (advisor)
This work analyzes problems of friction and lubrication of total hip replacement (THR). At first, experimental study of friction coefficient under various conditions was conducted using hip joint simulator based on principle of pendulum. After that, lubrication film development was observed, using colorimetric interferometry with head from THR and glass cup with respect of geometry and clearance to cups made originally for THR. With respect to research study [25] it was found that increasing contact conformity leads to increased film thickness. Also protein adsorption on articulating surfaces was observed. Thanks to adsorption 80 nm film thickness was measured even if relative surface speed was zero. Furthermore protein aggregation was observed on the border of contact zone, similar aggregations were observed by Myant et al. [29] or Vrbka et al. [25]. These aggregations are formed when lubricant is under shear stress and it can positively affect film thickness. If the relative motion of articulating surfaces is not sufficient, the protein layer can`t be refreshed enough and film thickness start decreasing. Coefficient of friction 0,13 was measured when lubricating film development was observed. Close to this value are material combinations metal on polyethylene and metal on metal.

Implementaion of the controllers of a mobile walking robot
Krajíček, Lukáš ; Věchet, Stanislav (referee) ; Ondroušek, Vít (advisor)
This diploma thesis deals with design and implementation of the controllers of a mobile walking robot. The advantage of these controllers are their kinematics and geometrics independent representation, which allow to use them for different robot types and tasks. In this thesis the contact controller is designed, which minimizes residual forces and torques at the robot's center of gravity, and thereby stabilize robot's body. Next the thesis deals with a posture controller, which maximizes a heuristic posture measure to optimize posture of robot body. Because of this optimization, legs are moved away from their limits and therefore they have more working space for next move. Implementation of the chosen solution is made on the robot's MATLAB mathematical model. Controllers are composed into a control basis, that allows to solve general control tasks by simultaneous combination of contained controllers. The algorithm was created for that simultaneous activation and its operation was explained on flow charts.

Transition from regular to chaotic motion in black hole magnetospheres
Kopáček, Ondřej ; Karas, Vladimír (advisor) ; Kulhánek, Petr (referee) ; Rezzolla, Luciano (referee)
Cosmic black holes can act as agents of particle acceleration. We study properties of a system consisting of a rotating black hole immersed in a large-scale organized magnetic field. Electrically charged particles in the immediate neighborhood of the horizon are influenced by strong gravity acting together with magnetic and induced electric components. We relax several constraints which were often imposed in previous works: the magnetic field does not have to share a common symmetry axis with the spin of the black hole but they can be inclined with respect to each other, thus violating the axial symmetry. Also, the black hole does not have to remain at rest but it can instead perform fast translational motion together with rotation. We demonstrate that the generalization brings new effects. Starting from uniform electro-vacuum fields in the curved spacetime, we find separatrices and identify magnetic neutral points forming in certain circumstances. We suggest that these structures can represent signatures of magnetic reconnection triggered by frame-dragging effects in the ergosphere. We further investigate the motion of charged particles in these black hole magnetospheres. We concentrate on the transition from the regular motion to chaos, and in this context we explore the characteristics of chaos in...

Pohyb nabitých částic v perturbovaných magnetických polích tokamaku
Papřok, R. ; Krlín, Ladislav ; Cahyna, Pavel ; Riccardo, V.
In this paper we present two Hamiltonian approaches–full and drift–for description of charged particles (e.g. electrons, D+) in magnetic field of a tokamak. We use a basic magnetic toroidal field configuration with shear plus overlapping island chains creating magnetic ergodic layer. We would like to use this apparatus for solving two physical problems. Firstly for an estimate of generation of electric field in edge plasma caused by addition of “ergodic coils”, which could serve as a mechanism for mitigation of ELMs and is will be studied on the COMPASS tokamak. Secondly we want to use the apparatus for tracing the influence on runaway electrons (energy 10 MeV) in the presence of magnetic field generated by Error Field Correction Coils (EFCCs) as are installed on JET Tokamak.