National Repository of Grey Literature 2,405 records found  previous11 - 20nextend  jump to record: Search took 0.18 seconds. 

Plasmodiophora brassicae on winter rape
Řičařová, Veronika ; Ryšánek, Pavel (advisor) ; Jaroslav, Jaroslav (referee)
Winter oilseed rape (Brassica napus) is an important crop in the Czech Republic. Clubroot disease caused by the pathogen Plasmodiophora brassicae Wor. is a serious and still-growing problem for oilseed rape growers. Research on P. brassicae in the Czech Republic is therefore important for the development of effective strategies to manage clubroot under Czech environmental conditions. One of the aims of this study was monitoring of this pathogen. The disease was previously widespread in commercial vegetable production and in hobby gardens. Since 2010, oilseed rape clubroot started to spread across the whole country, whereas it had previously only been observed in the northeast. Clubroot occurrence was monitored for five years by the Union of Oilseed Growers and Processors on the basis of disease symptoms present on oilseed rape fields. The presence of P. brassicae and clubroot symptoms were reported in all regions of the Czech Republic, except the Ústecký Region, and in 31 out of 76 districts. At present, at least 130 fields are known to be infested by the pathogen, but this number is very likely underestimated. Some soil samples were also tested by conventional PCR (polymerase chain reaction) to evaluate the possibility of their usage. All 14 suspected samples tested positive by PCR. The next aim was to evaluate the pathotype composition of P. brassicae populations from the Czech Republic, according to the three evaluation systems, and to determine soil inoculum loads for representative fields via traditional end-point PCR as well as quantitative PCR analysis. There were considerable differences between the populations of P. brassicae, and the number of pathotypes varied depending on the evaluation system and the threshold used to distinguish susceptible vs. resistant plant reactions. This is the first study comparing the effect of different thresholds. Using an index of disease (ID) of 25 % to distinguish susceptible vs. resistants reactions, there was a total of five pathotypes identified based on the differentials of Williams, five with the system of Somé et al., and 10 with the European Clubroot Differential (ECD) set. However, based on a threshold of 50%, there were five pathotypes according to the evaluation system by Williams, four based on the differentials of Somé et al. and 8 with the ECD set. Changing of the thresholds led to the reclassification of some pathotypes. Pathotypes 7 by Williams was the most frequent in both thresholds. High amounts of pathogen DNA were found in many of the field soils analysed by quantitative PCR. Experiments with P. brassicae-resistant cultivars of winter oilseed rape were conducted in an infested field and greenhouse. In the greenhouse, six resistant cultivars were grown in infested soil collected from various fields in the Czech Republic and assessed for index of disease (ID %). The best results bring cultivar Mentor (2+- 0.7 %) closely followed by cultivar SY Alister (5+-1.1 %), the highest ID had cultivar CHW 241 (30+-3.8%). In the field experiment, seven resistant cultivars were grown, and disease development was monitored monthly. The lowest index of disease brought cultivar Andromeda (3+- 0.8 %) and PT 235 (4+-1.5 %), the highest ID has cultivar CWH 241(46 +- 6.5 %) in the first season and in the second season any cultivar achieved 25 % ID. Yields were measured at the end of the cropping season. The highest yield was achieved by cultivar SY Alister (6.1 t/ha) in the first season and cultivar PT 242 (5.03 t/ha) in the second season. The inoculum level was measured across the field by (qPCR), and a map of the infestation was created. The highest spore concentration was found on the field entrance. Collectively, the information obtained on the effectiveness of host resistance and pathogenic diversity of P. brassicae populations from the Czech Republic may help to more effectively manage clubroot in this country.

Evaluation of the effect of radiation on evapotranspiration estimates and drought indices
Mairich, Pavel ; Matula, Svatopluk (advisor)
Abstract Evaluation of the effect of radiation on evapotranspiration estimates and drought indices The severity of drought can be inferred from water balance, of which evapotranspiration is a component. The evapotranspiration estimates are often based on the FAO 56 methodology with the net radiation as the main input. Usually, however, the latter is not directly measured. This study investigates to which extent can the direct solar radiation and the long-wave net radiation measurements be replaced by calculation according to FAO 56 with constant or locally optimised radiation coefficients or, for the long-wave net radiation, the coefficients according to Penman (1948). The problem is demonstrated on data from the Solar and Ozone Observatory in Hradec Králové for 2011 and 2012. On average, the estimates of solar radiation are satisfactory even with the standard coefficients and can be improved by local optimisation of the coefficients. The estimates for particular days may considerably differ from reality. The long-wave net radiation estimate according to FAO 56 is, on average, by about 30 % lower than the measured long-wave net radiation or an estimate thereof based on locally optimised or Penman's coefficients, with the average differences between any two of the last three methods much smaller (less than 9 %). The inaccuracy of estimates for particular days is considerable, too. The average reference crop evapotranspiration according to FAO 56 with standard coefficients is therefore considerably higher (by about 15 %) than analogous evapotranspiration obtained from the measured radiation or according to FAO 56 with optimised or Penman's radiation coefficients. The cause is that grass in the observatory was not irrigated. It therefore occasionally suffered from water stress and got overheated. The use of FAO 56 with the radiation inputs measured or calculated using other than the standard radiation coefficients may underestimate the evapotranspiration and the need for irrigation.

The analysis of the weather impact on the shape and shift of the production frontier
Hřebíková, Barbora ; Čechura, Lukáš (advisor) ; Peterová, Jarmila (referee)
Although weather is a significant determinant of agriculture production, it is not a common practice in production analysis to investigate on its direct impact on the level of final production. We assume that the problem is methodological, since it is difficult to find a proper proxy variable for weather in these models. Thus, in the common production models, the weather is often included into a set of unmeasured determinants that affects the level of final production and farmers productivity (statistical noise, random error). The aim of this dissertation is to solve this methodological issues and find the way to define weather and its impacts in a form of proxy variable, to include this variable into proper econometric model and to apply the model. The purpose of this dissertation is to get beyond the empirical knowledge and define econometric model that would quantify weather impacts as a part of mutually (un)conditioned factors of final production, to specify the model and apply it. The dissertation is based on the assumption that the method of stochastic frontier analysis (SFA) represents a potential opportunity to treat the weather as a specific (though not firm-controllable) factor of production and technical efficiency. SFA is parametric method based on econometric approach. Its starting point is the stochastic frontier production function. The method was presented in the work of Aigner, Lovell and Schmidt (1977) and Meusen and van den Broeck (1977). Unlike commonly used econometric models, SFA is based on analysis of production frontier that is formed by deterministic production frontier function and the compound error term. The compound error term consists of two parts -- random error (statistical noise, error term) and technical inefficiency. Technical inefficiency represents the difference in the actual level of production of the producer, and the maximum attainable (possible) level that would be achieved if the producer used a particular combination of production factors in a maximum technically efficient way. Over time, it has been developed on a number of aspects - see time variant and invariant inefficiency, heteroscedasticity, measurement and unmeasured heterogeneity. Along with the DEA, SFA has become the preferred methodology in the area of production frontier and productivity and efficiency analysis in agriculture. Lately, it has been applied for example by Bakusc, Fertő and Fogarasi (2008) Mathijs and Swinnen (2001), Hockmann and Pieniadz (2007), Bokusheva and Kumbhakar (2008) Hockmann et al. (2007), Čechura a Hockmann (2011, 2012), and Čechura et al. (2014 a, b). We assume that the weather impacts should be analysed with regard to technical efficiency, rather than as a part of statistical noise. Implementation of weather in part of deterministic production function rather than in the statistical noise is a significant change in the methodical approach within the stochastic frontier analysis. Analysis of the weather impacts on the changes in the level of TE has not been greatly recorded in the associated literature and is, therefore, considered as the main contribution of this work for the current theory of production frontier estimation, or the technological effectiveness, in the field of agriculture. Taking into account other variables that are important for the relationship and whose inclusion would enhance the explanatory power of the model was part of the objective of this work.Thus, the possible effect of heterogeneity was taken into account when models were formulated and final results discussed. The paper first defined and discussed possible ways how to incorporate the effects of the weather into production frontier model. Assessing the possibility of inclusion of weather in these models was based on the theoretical framework for the development of stochastic frontier analysis, which defines the concept of technical efficiency, distance functions theory, stochastic production function theory and the methodology and techniques that are applied within the framework of SFA, which were relevant for the purpose of this work. Then, the weather impacts on the shape and shift of production frontier and technical efficiency of czech cereal production in the years 2004-2011 was analyzed. The analysis was based on the assumption that there are two ways how to define variables representing weather in these models. One way is to use specific climatic data, which directly describe the state of the weather. For the purpose of this thesis, the variables mean air temperature (AVTit) and sum of precipitation (SUMPit) in the period between planting and harvest of cereals in the individual regions of Czech republic (NUTS 3) were selected. Variables were calculated from the data on monthly mean air temperatures and monthly sums of precipitation on the regional levels provided by Czech hydro-meteorological institute CHMI. Another way to define weather variable is to use a proxy variable. In this dissertation, the calculation of climatic index (KITit) was applied. Climatic index was calculated as a sum of ratios between the actual yield levels and approximated yield levels of wheat, barley and rye, weighted by the importance of each plant in a cereal production protfolio in each region of the Czech republic. Yield levels were approximated by the linear trend functions, yield and weights were calculated with the use of data on regional production and sown area under individual grains by year at the level of regional production (NUTS 3) provided by Czech Statistical Office. Both ways of weather definition are associated with some advantages and disadvantages. Particular climatic data are very precise specificatopn of the actual weather conditions, however, to capture their impacts on the level of final production, they must be implemented into model correctly along with the number of other factors, which have an impact on the level of final production. Climatic index, on the other hand, relates the weather impacts directly to the yield levels (it has been based on the assumption that the violation from yield trends are caused by the weather impacts), though, it does not accomodate the concrete weather characteristics. The analysis was applied on unbalanced panel data consisting of the information on the individual production of 803 producers specialized on cereal production, which have each the observations from at least two years out of total 8-years time serie. Specialization on crop production was defined as minimum 50% share of cereal production on the total plant production. Final panel consists of 2332 observations in total. The values of AVTit, SUMPit a KITit has been associated with each individual producer according to his local jurisdiction for a particular region. Weather impacts in the three specified forms were implemented into models that were defined as stochastic production frontier models that capture the possible heterogeneity effects. The aim is to identify the impact of weather on shift and shape of production frontier. Through the defined models, the production technology and technical efficiency were estimated. We assume that the proposed inclusion in weather impacts will lead to a better explanatory power of defined models, as a result of weather extraction from a random components of the model, or from a set of unmeasured factors causing heterogeneity of the sample, respectivelly. Two types of models were applied to estimate TE - Fixed management model (FMM) and Random parameter model (RPM). Models were defined as translogarithmic multiple-output distance function. The analyzed endogene variable is cereal production (expressed in thousands of EUR). Other two outputs, other plant production and animal production (both expressed in thousands of EUR) are expressed as the share on cereal production and they appear on the right side of the equation together with the exogene variables representing production factors labour (in AWU), total utilized land (in acres), capital (sum of contract work, especially machinery work, and depreciation, expressed in thousands of EUR), specific material (represented by the costs of seeds, plants, fertilisers and crop protection, expressed in thousands of EUR), and other material (in thousands of EUR). The values of all three outputs, capital, and material inputs were deflated by the the country price indexes taken from the EUROSTAT database (2005=100). In Random parameter model, heterogeneity is captured in random parameters and in the determinants of distribution of the technical inefficiency, uit. All production factors were defined as a random parameters and weather in form of KITit enters the mean of uit and so it represents the possible source of unmeasured heterogeneity of a sample. In fixed management model, heterogeneity is defined as a special factor representing firm specific effects, mi. This factor represents unmeasured sources of heterogeneity of sample and enters the model in interaction with other production factors and the with the trend variable, tit.Trend variable represents the impact of technological change at a time t for each producer i. The weather impacts in form of variables AVTit a SUMPit is, together with production factors, excluded from the set of firm specific effects and it is also numerically expressed. That way weather becomes a measured source of heterogeneity of a sample. Both types of models were estimated also without the weather impacts specification in order to obtain the benchmark against which the effects of weather impacts specification on production frontier and technical efficiency is evaluated. Easier interpretation of results was achieved by naming all five estimated models as follows: FMM is a name of fixed management model that does not include specified weather variables, AVT is a name for fixed management model including weather impacts in form of average temperatures AVTit, SUMP is name of model which includes weather impacts in form of sum of precipitations SUMPit, RPM is random parameter model that does not account for weather impacts, KIT is random parameter model that includes climatic index KITit into the mean of inefficiency. All estimated models fullfilled the conditions of monotonicity and kvasikonvexity for each production factor with the exception of capital in FMM, AVT, SUMP and RPM model. Violating the kvasikonvexity condition is against the theoretical assumptions the models are based on, however, since capital is also insignificant, it is not necesary to regard model as incorrect specification. Violation of kvasikonvexity condition can be caused by the presence of other factor, which might have contraproductive influence on final production in relation to capital. For example, Cechura and Hockann (2014) mention imperfections of capital market as possible cause of inadequate use of this production factor with respect to technological change. Insufficient significancy of capital can be the result of incorrect specification of variable itself, as capital is defined as investment depreciation and sum of contract work in the whole production process and not only capital related to crop production. The importance of capital in relation to crop production is, thus, not strong enough to be significant. Except of capital are all other production factors significant on the significancy level of 0,01. All estimated models exhibit a common pattern as far as production elasticity is concerned. The highest elasticity is attributed to production factors specific and othe material. Production elasticity of specific material reaches values of 0,29-0,38, the highest in model KIT and lowest of the values in model AVT. Production elasticity of other material reahed even higher values in the range 0,40-0,47. Highest elasticity of othe material was estimated by model AVT and lowest by model KIT. Lowest production elasticity are attributed to production factors labour and land. Labour reached elasticity between 0,006 and 0,129 and land reached production elasticity in the range of 0,114 a 0,129. All estimated models displayed simmilar results regarding production elasticities of production factors, which also correspond with theoretical presumptions about production elasticities -- highest values of elasticity of material inputs correspond with naturally high flexibility of these production factors, while lowest values of elasticity of land corresponds with theoretical aspect of land as relativelly inelastic production factor. Low production elasticity of labour was explained as a result of lower labor intensity of cereals sector compared to other sectors. Production elasticity of weather is significant both in form of average temperatures between planting and harvest in a given region, AVTit, and form of total precipitation between planting and harvest in a given region, SUMPit. Production elasticity of AVTit, reach rather high value of 0,3691, which is in the same level as production elasticities of material inputs. Production elasticity of SUMPit is also significant and reach rather high lower value of 0,1489. Both parameters shows significant impact of weather on the level of final crop production. Sum of production elasticities in all models reach the values around 1, indicating constant returns of scale, RS (RSRPM=1,0064, RSKIT=0,9738, RSSUMP =1,00002, RSFMM= 0,9992, RSAVT=1,0018.). The results correspond with the conclusion of Cechura (2009) and Cechura and Hockmann (2014) about the constant returns of scale in cereals sector in Czech republic. Since the value of RS is calculated only with the use of production elasticities of production factors, almost identical result provided by all three specifications of fixed management model is a proof of correct model specification. Further, the significance of technological change and its impact on final production and production elasticities were reviewed. Technological change, TCH, represents changes in production technology over time through reported period. It is commonly assumed that there is improvement on production technology over time. All estimated models prooved significant impact of TCH on the level of final production. All specified fixed management models indicate positive impaact of TCH, which accelerates over time. Estimated random parameter models gave contradicting results -- model KIT implies that TCH is negative and decelerating in time, while model RPM indicates positive impact of TCH on the level of final production, which is also decelerating in time. It was concluded, that in case that weather is not included into model, it can have a direct impact on the positive direction of TCH effect, which can be captured by implementing weather into model and so the TCH becomes negative. However, as to be discussed later, random parameter model appeared not as a suitable specification for analyzed relationship and so the estimate of the TCH impact might have been distorted. The impact of technological progress on the production elasticities (so-called biased technological change) is in fixed management models displayed by parameters representing the interaction of production factors with trend variable. The hypothesis of time invariant parameters (Hicks neutral technological change) associated with the production factors is rejected for all models except the model AVT. Significant baised technological change is confirmed for models FMM and SUMP. Biased technological change is other material-saving and specific material-intensive. In the AVT model, where weather is represented by average temperatures, AVTit, technological change is not significant in relation to any production factors. In both random parameter models, rejection of hypothesis of time invariant parameters only confirms significance of technological change in relation to final crop production. Nonsignificant effect of technological change on production elasticity of labor, land and capital indicates a generally low ability of farmers to respond to technological developments, which can be explained by two reasons. The first reason can the possible complications in adaptation to the conditions of the EU common agricultural market (eg. there are not created adequate conditions in the domestic market, which would make it easier for farmers to integrate into the EU). This assumption is based on conclusion made by Cechura and Hockmann (2014), where they explain the fact that in number of European countries there is capital-saving technological change instead of expected capital-using technical change as the effect of serious adjustment problems, including problems in the capital market.. Second possible reason for nonsignificant effect of technological change on production elasticity of labor, land and capital is that the financial support of agricultural sector, which was supposed to create sufficient conditions for accomodation of technological progress, has not shown yet. Then, the biased TCH is not pronounced in relation to most production factors. Weather impacts (SUMPit, AVTit) are not in significant relation to technological change. Both types of models, FMM and RPM were discussed in relation to the presence of the heterogeneity effects All estimated random parameters in both RPM models are statistically significant with the exception of the production factor capital in a model that does not involve the influence of weather (model RPM). Estimated parameter for variable KITit (0,0221) shows significant positive impact of the weather on the distribution of TE. That way, heterogeneity in relation to TE is confirmed, too, as well as significant impact of weather on the level of TE. Management (production environment) is significant in all three estimated fixed management models. In models that include weather impacts (AVT, SUMP), the parameter estimates indicates positive, slightly decreasing effect of management (or heterogeneity, respectivelly) on the level of final crop production. In model FMM, on the contrary, first and second order parameters of mangement indicate also significant, but negative and decelerating effect of management (heterogeneity) on final crop production. If weather impact is included into models in form of AVTit, or. SUMPit, the direction of the influence of management on the level of final crop production changes. Based on the significance of first order parameter of management, significant presence of heterogeneity of analyzed sample is confirmed in all three estimated fixed management models. As far as the effect of heterogeneity on single production factors (so called management bias) is concerned, the results indicate that in case of model that does not include weather impacts (model FMM) the heterogeneity has positive impact on production elasticities of land and capital and negative effect on the production elasticities of material inputs. In models that account for weather impacts, heterogeneity has negative effect on production elasticities of land and capital and positive effect on the elasticity of material inputs. Heterogeneity effect on the production elasticity of labor is insignificant in all models FMM. In all three estimated models, the effect of heterogeneity is strongest in case of production factors specific and othe material, and, also, on production factor land. In case of FMM model, heterogeneity leads to increase of production elasticity of land, while in AVT and SUMP heterogeneity leads to decrease of production elasticity of land. At the same time, the production elasticity of land, as discussed earlier, is rather low in all three models. This fact leads to a conclusion that in models that accomodate weather impacts (AVT and SUMP), as the effect of extraction of weather from the sources of unmeasured heterogeneity, the heterogeneity has a negative impact on production elasticity of land. It can be stated that the inclusion of weather effects into the sources of unmeasured heterogeneity overestimated the positive effect of unmeasured heterogeneity on the production factor land in the model FMM. Management does not have a significant effect on the weather in form of SUMPit, while it has significant and negative effect on the weather in form of average temperature, AVTit, with the value of -0.0622**. In other words, heterogeneity is in negative interaction with weather represented by average temperatures, while weather in form of the sum of precipitation (SUMPit) does not exhibit significant relation to unmeasured heteregeneity. In comparison with the model that does not include weather impacts, the effect of heterogeneity on the production elasticities has the opposite direction the models that include weather. Compare to the model where weather is represented by average temperature (model AVT), the effect of management (heterogeneity) on the production elasticity of capital is bigger in model with weather represented by sum of precipitations (model SUMP) while the effect of management (heterogeneity) on the production elasticity of land and material imputs is smaller in model with weather represented by sum of precipitations (model SUMP). Technical efficiency is significant in all estimated models. The variability of inefficiency effects is bigger than the variabilty of random error in both models that include weather and models where weather impacts are not specified. The average of TE in random parametr models reaches rather low value (setting the average TE = 54%), which indicates, that specified RPM models underestimate TE as a possible result of incorrect variable specification, or, incorrect assumptions on the distribution of the error term representing inefficiency. All estimated FMM models results in simmilar value of average TE (86-87%) with the simmilar variability of TE (cca 0,5%). Technological change has significant and positive effect on the level of TE in the model that does not specify the weather impacts (model FMM), with a value of 0,0140***, while in the models that include weather in form of average temperatures, or sum of precipitations, respectivelly, technological change has a negative effect on the level of TE (in model AVT = -0.0135***; in SUMP = -0.0114***). It can be stated, that in the model where the weather impacts were not specified, the effect of TCH on the level of TE may be distorted, because the parameter estimate implies also a systematic influence weather in the analyzed period. The effect of unmeasured heterogeneity on the level of TE is significant in all three estimated fixed management models. In models AVT and SUMP, heterogeneity has a positive effect on the level of TE (in AVT = 0.1413 and in SUMP =0,1389), while in the model that does not include weather variable the effect of heterogeneity on the level of TE is negative (in FMM =-0,1378). In models AVT and SUMP, the weather impacts were extracted from the sources of unmeasured heterogeneity, and so from its influence on the level of TE (together with other production factors weather becomes a source of measured heterogeneity). The extraction of the weather from the sources of unmeasured heterogeneity leads to change in the direction of heterogeneity effects on the level of TE from negative (in model where weather was part of unmeasured heterogeneity) to positive. The direct impact of weather on TE is only significant in case of variable AVTit, indicating that average temperatures reduce the level of TE (-0.0622**). Weather in form of sum of precipitations does not have a significant impact on the level of TE. It is evident that incorporating the effects of weather significantly changes the direction of the influence of management on the production of cereals and the direction of influence on the management of production elasticity of each factor in the final model. Analogically with the case of the influence of heterogeneity on the production elasticity of land, it is stated that the weather (included in sources of unmeasured heterogeneity) played a role in the underestimation of the impact of heterogeneity on the overall cereal production. Also, in case that weather was not extracted form the sources of unmeasured heterogeneity would play significant role in underestimation of the effect of heterogeneity on the level of TE. Based on the results of parameters estimates, and on the estimate of average values of TE and its variability, it is concluded, that the effect of inclusion of weather into defined models does not have significant direct impact on the average value of TE, however, its impact on the level of TE and the level of final crop production is pronounced via effects of unmeasured heterogeneity, from which the weather was extracted by its specification in form of AVTit a SUMPit. The analysis results confirms that it is possible to specify the impacts of weather on the shape and shift of production frontier, and, this to define this impact in a model. Results Aaso indicate that the weather reduces the level of TE and is an important source of inefficiency Czech producers of cereals (crop). The model of stochastic frontier produkction function that capture the weather impact was designed, thereby the goal of the dissertation was met. Results also show that unmeasured heterogeneity is an important feature of czech agriculture and that the identification of its sources is critical for achieving higher productivity and higher level of final output. The assumption about significant presence of heterogeneity in production technology among producers was confirmed, and heterogeneity among producers is a significant feature of cereal sector. By extracting weather from sources of unmeasured heterogeneity, the impact of real unmeasured heterogeneity (all that was not extracted from its sources) and the real impact of weather on the level of TE is revealed. If weather was not specified in a model, the TE would be overestimated. Model in form of translogarithmic multiple-output distance function well approximates the relationship between weather, technical efficiency, and final cereal production. Analysis also revealed, that the Random parameter model, which was applied in case that weather impacts were expressed as an index number, is not the suitable model specification due to underestimating of the average level of TE. The problem of underestimation of TE might be caused by wrong variable definition or incorrect assumptions about the distribution of inefficiency term. Fixed management model, on the other hand, appears as a very good tool for identification of weather impacts (in form of average temperatures and sum of precipitations in the period between planting and harvesting) on the level of TE and on the shape and shift of production frontier of czech cereals producers. The results confirm the assumption that it is important to specify weather impacts in models analyzing the level of TE of the plant production. By specification of weather impactzs in form of proper variables (AVTit, SUMPit), the weather was extracted from the sources of unmeasured heterogeneity. This methodical step will help to refine the estimate of production technology and sources of inefficiencies (or, the real inefficiency, respectivelly). That way, the explanatory power of model increase, which leads to generally more accurate estimate of TE. Dissertation has fulfilled its purpose and has brought important insights into the impact of weather on the TE, about the relationship between weather and intercompany unmeasured heterogeneity, about the effect of weather on the impact of technological change, and so the overall impact of weather specification on the shape and shift of production frontier. A model that is suitable application to define these relationships was designed. Placing the weather into deterministic part of production frontier function instead of statistical noise (or, random error, respectivelly) means a remarkable change in the methodical approach within the stochastic frontier analysis, and, due to the fact that the analysis of weather impacts on the level of TE to this extent has not yet been observed in relevant literature, the dissertation can be considered a substantial contribution to current theory of the estimate of technical efficiency of agriculture. The dissertation arose within the framework of solution of the 7th FP EU project COMPETE no 312029.

The effect of live weight on androsterone and skatole content in adipose tissue of boars
Poláčková, Miroslava ; Okrouhlá, Monika (advisor) ; Michaela, Michaela (referee)
The aim of this study was to provide a comprehensive literature review and evaluation of research on the influence of androstenone and skatole for boar live weight, which thanks to modern trends sensitive issue. Skatole is malodorous indole compound, which is formed in the colon of pigs later leads to deposition in adipose tissue, causing the so-called. Boar odor. Steroid androstenone is produced by Leydig cells of the testes boars, when a part is floated urine, partly accumulate in saliva, to stimulate the sows and part is accumulated in the adipose tissue. The chromatographic method suitable for detecting substances responsible for boar odor was developed on a gas chromatograph mass spectrometer using chemical standards. According to the results, we can evaluate that the differences between imunocastraties and boars are minimal, not only in fattening values, but also at the height of the back fat or muscle growth musculus longissimus lumborum et thoracis. Only with differing indicators are the amount of androstenone and skatole, which confirms that feeding into higher slaughter weight pigs is unprofitable, because the amount of these substances is many times higher than allowed by European standard. The meat of boars is therefore inconvenient and are a much better choice imunokastráti. The hypothesis that a live weight of influence on behalf of androstenone and skatole in fat tissue boars are so confirmed.

Influence of the sex of calf on milk production of cow
Fialová, Zuzana ; Přibyl, Josef (advisor) ; Jiří, Jiří (referee)
The current modern time brings knowledge that help streamline the efforts of breeders and interfere with the originally untouchable action, fertilization. Genetics and reproduction have become the main interest of biotechnological research. It was develop and operating implementation of biotechnological methods such as artificial insemination, embryo transfer, longterm cryopreservation of semen or sexsorting semen, which became the impetus the topic of this thesis. Milk production performance of cattle is the property caused by a plethora of internal and external influences. Recent interest in professional public switched to other options affecting the milk yield, which is the sex of the calf. The aim of this study, processed in following up on the research GRANT QJ1510139 National information system of genetic evaluation of livestock, was to verify the influence of the sex of the calf on the milk yield of the mothers in our conditions. From previous studies (Hinde et al., 2014; Grasboll et al., 2015), arose the hypothesis, that gender affects the milk yield. To evaluate the two files have been used the measured data from the 1995-2015 with data on the sex of the calf and milk yields of the holstein dairy cattle in the control days provided by ČMSCH, a.s. From raw data has been created file of cows with three lactations, while each breeding had registered at least 3 control days on lactation. Abnormal data, wrong control days and sires with low number of daughters were eliminated as well. After editing the file contained 4.7 million milk yields from 197 thousends cows. Thesis worked with model based test-day access. Average daily milk yield in the file was 27.29 kg. In the method of least squares for 10 models were used the following effects: HTD (herd test day), Pohl (the effect of gender), Porl (effect of lactation), Skup (group) (for first lactation created by age of calving, calving period, service period and year of calving, for second and third lactations is the intervening period used instead of the age of the calving). Fixed regression the Legendre polynomial (LP) was used with 4 parameters. Milk yield fitted using LP showed normal shape of the lactation curve. According to the approved models is the effect of the sex of the calf on milk yield of the mother of the calf statistically insignificant. Having bulls increase productivity of milk yield about 0.07 kg/day which is about 21 kg per lactation. Genetic parameters were not examined due to the insignificance of the effect.

Tumor proliferation of mammary gland in bitches
Musilová, Lucie ; Rajmon, Radko (advisor) ; Dita, Dita (referee)
Thanks to breeders' and veterinary care, dogs' age is increasing, which results in proportional increase in diseases, including cancer. Mammary gland cancer is the most common oncologic problem in bitches. Development of neoplasms is affected by endogenous factors (for example hormones), and exogenous factors also (radiation, carcinogenic substances, etc.). These factors cause mutations, which affects the formation of cancer growth. We divide tumours on true and false ones. False tumours are e.g. cysts. True tumours are either benign or malignant, which create daughter centres called metastasis. Malignant tumours bear worse prognosis than benign tumours. Metastasis and tumours affect inidividual's organism by e.g. negative effect on organ function. Individual can stimulate tumours by e.g. hormone secretion. Tumour classification is important because of determining the right treatment and prognosis for the future. Classification is divided in three parts: typing, grading, staging. Typing divides tumours into groups by their effect on tissues, or by individual tumours. Grading divides tumour by level of their differentiation. Staging classifies tumours by TNM, where T defines tumour's size, N defines level of lymphatics invasion and M defines metastasis formation. Mamary gland function is divided in three physiological phases: mammary gland development, lactation and galactopoesis. Mammary gland is probably modified sweat gland. Lactation is affected by hormone prolactin, which supports mammary gland development. Galactopoesis is state, which maintains lactation. It's important to prevent stress in this phase, because stress hormones block oxytocin, so milk ejection isn't coming about. Effect of hormones also change by estrous cycle phase. In bitch, there are those phases: proestrus, estrus, diestrus and anestrus. Estrous cycle deffects can occur and those deffects can cause so called false pregnancy. This state can result in diseases like pyometra or mastitis. Etiopathogenesis of mammary tumours is affected by two kind of factors, endogenous and exogenous. Prevention is also important, this includes more quality care and feed. Another important prevention can be adequate exercise and potential sterilisation of the female. If the animal is already ill, then there is important to discuss it with veterinarian and start treatment as soon as possible. Firt method of treatment is surgical, which is divided by mammary gland invasion. Other method is chemotherapy, which is becoming more and more frequent as support treatment method after surgery. Third method is called radiological. It's relatively new type of therapy, but it is, unfortunately, still relatively expensive. Last method is called hormonal. Again, it is used usually as support treatment after surgical removal of the tumour. There are used many diagnostic methods for clinical evaluation of mammary gland tumours, e.g. cytology, USG, RTG. Prognosis determination and post-surgical care is also important. Main complication is disease recurrence, which is more frequently occuring in malignant tumours than in benign tumours. Most important is prevention and treatment start as soon as possible after diagnosis assesment. It is appropriate to not to burden breeding bitch with frequent litters, or let veterinarian perform ovariohysterectomy (OHE) on bitch, which is not used for breeding. Ovariohysterectomy reduces probability of development of this disease.It is very important for breeder to regularly check mammary gland by palpation and immediately visit veterinarian with every change or lump.

Evaluation of cultivars tolerance of chosen vegetable assortment to fungal diseases
Maláková, Dana ; Koudela, Martin (advisor) ; Kristína, Kristína (referee)
The aim of this Diploma thesis was to assess the cultivar tolerance of a chosen assortment of butterhead lettuce, leaf lettuce, iceberg lettuce and cabbage to fungal pathogens (Bremia lactucae, Fusarium oxysporum f. sp. conglutinans). The experiment was conducted in the laboratory conditions of the gardening department FAPPZ of the Czech University of Agriculture in growth chambers. The lettuce experiments were done in given conditions with the temperatures of 18 - 20 °C under the regime 12 hrs. of light and 12 hrs. of darkness. The cabbage experiments were conducted in given conditions under the regime 12 hrs. of light and 12 hrs. of darkness with the temperatures of 14 °C during the day and 12 °C in the night. The lettuce plants were planted in dishes on fine sand. All experiments had infected and control variants. After emergence, the experimental plants were inoculated with variants of the selected pathogen. The plants were observed in 2 - 3 day intervals throughout the whole experiment. The experiment was assessed using the modified standard method according to Pawelec et al. (2006). A modified method with a percentage scale was used to assess the lettuce experiments. Cabbage experiments were evaluated with a scale of points ranging from 0 to 9 according to the percentage of infection on the plants. The results of the methodology were determined using the program Statistica 12. In the experiments evaluating the variety tolerance of a chosen assortment leaf lettuce and iceberg lettuce to the pathogen Bremia lactucae Bl:31, a statistically significant difference in the sensitivity to this pathogen was established. The results show that the most resistant varieties are Tarzan, Stamir, Adinal a Verala. The greatest sensitivity to the pathogen Bl:31 has a variety "Dětenická Atrakce" then Traper and Nikolaj. Effect of seed treatment with hot water (HWT) to suppress pathogen B. lactucae was statistically significant in the varieties "Dětenická Atrakce" (10% decrease) and Dubáček (7% decrease) compared with untreated infectious variant with HWT. In the sensitivity evaluation of varieties and lines of white cabbage was a statistically significant difference in infecting of pathogen Fusarium oxysporum f. Sp. conglutinans breed 1. The most significantly susceptible to the pathogen Foc was variety Pourovo late-season (degree of assault after inoculation was 6.52 points).

The assessment of change in the water balance of Hačka catchment due to the climate change
Moravec, Vojtěch ; Hanel, Martin (advisor) ; Ladislav, Ladislav (referee)
In the presented paper the changes in mean runoff, temperature and precipitation totals in an observed period 1962-2015 in the catchment river Hačka are assessed. The paper further presents the analysis of climate change impact on mean runoff between the periods 1984-2014 (control period) and 2035-2065 and 2068-2098 (scenario periods) using the projections of three regional climate model simulations. Thin Plate Spline interpolation was used to estimate basin precipitation and temperature. Modified hydrological analogy was used for precise quantification of naturalized runoff (i.e. not affected by water use). Climate change scenarios were derived using simple delta change approach, i.e. observed series of precipitation and temperature were adjusted in order to give the same changes between the control and scenario period as regional climate model simulations. Hydrological balance was modelled with a conceptual hydrological model Bilan. The parameters of the hydrological model were estimated using observed data. These parameters were subsequently used to derive discharge series under climate change conditions for each regional climate model simulation. Results showed a 1.7 °C average increase in mean annual temperature in the scenario period 2035-2065 and a 2.8 °C average increase in the scenario period 2068-2098. The seasonal cycle of precipitation in the scenario conditions is shifted, although mean annual precipitation totals remain practically unchanged (max changes -8.1 %; +9.3 %). The mean annual discharge decreases by 5.7% in average (most 20.3 %) in period 2035-2065 and a significant decrease of 25.5% in average (most 45.9 %) in annual mean discharge is expected in the period 2068-2098. Frequency of minimal runoff is expected to increase up to two times. Precipitation increase is expected from the beginning of the fall to the beginning of the summer, with a slight decrease in spring. Increase in precipitation is followed by evapotranspiration increase, caused by increase in temperature. Summer precipitation is expected to decrease as well as summer runoff. Due to the temperature increase, time shift of the snowmelt is expected from the periods between March-April to January-February. This will also affect the increase of the discharge in this period. This knowledge can be applied in water management planning in the future.

Inventory of woody plants in a part of the CULS area, elaboration of the digitized map and a draft of reconstruction of its selected part
Talácko, Ondřej ; Kunt, Miroslav (advisor) ; Fedurcová, Alena (referee)
A topic of this Bachelor thesis is reinventory of woody plants of University of Life Sciences grounds that is located in Prague Czech Republic. The Universitys literary part is based on reputable authors and the practical part is based on an inventory. This inventory is done by Machovec and his point of view on woods. Maps from past students who made theses of this topic at the same place were used to target the species. For a smooth cooperation in this Bachelor thesis maps of changing buildings plan were applied. The main task was to reinventory all the species so it was necessary to check the woods and their location. The location was in the same state as the previous woods. Based on the research of this location the inventory of woods by Machovec had to be used. This method contained an evaluation of girth width crown and age landscaping values however in this Bachelor thesis the girth and age of bushes werent evaluated. The genus species and the cultivar had to be assessed if possible and the evaluated parameters for single trees were averaged. The data of all the single trees were listed into inventory tables and set with unique codes for future recognition in the program. The whole practical part of the thesis was drawn in a program called AutoCAD version 2014. Once the inventory was done there was photographic documentation of the groups of trees which is available online on mapserver. The pictures are used for comparing a visual difference of the area in different seasons. Drastic changes have occurred in certain parts of the area of my research. Probably the biggest change was in the building of new Courseware pavilions and its surrounding. The big change at Courseware pavilions was the reason why this research was necessary. Also it was very important to study all changes that were done in past four years that were connected with every single wood in other areas. By the values given by the invenory tables was showed that there is 4079 trees in the area. Hardwoods are represented by 3319 woods and conifers are represented by 760 specimen. The most common in case of hardwoods is the Acer and from conifers its Pinus. By this enviroment the CULS areal makes great place for spending time in nature. The woody value is here on the third level and this means that there is prosperous viridity.

Financial analysis of the selected company
Lagová, Veronika ; Veselá, Kamila (advisor) ; Srbek, Pavel (referee)
The bachelor's thesis deals with the topic of a business financial analysis. It is divided into two parts, where the first part focuses on theoretical description of individual methods and indicators, while the second part deals with the way selected analysis are applied to a specific company, which is CMS Ltd. The practical part first describes the company, its history and its function. Furthermore the thesis shows the application of horizontal and vertical analysis of financial reports from 2010 to 2015. After that, selected indicators of profitability, liquidity, activity, indebtedness and net working capital were calculated. In addition, the calculations were accompanied by tables and graphs to make it easier to recognize the development in a certain period. Towards the end of the analysis were performed bankruptcy and creditworthy models, specifically Index IN05 and Kralicek's Quick Test. Based on the evaluation of the creditworthy model, in the last two years the company has fallen into a so-called "grey zone", where it is impossible to accurately determine the financial situation of the company, however, based on the results of the Index IN05, the company is only at a low risk of bankruptcy. Finally, all the calculations are evaluated, as well as their causes and effects. If some values are financially unsatisfactory for the company, then recommendations for improvement are offered.