National Repository of Grey Literature 23 records found  previous11 - 20next  jump to record: Search took 0.00 seconds. 
Investigation of the molecular mechanisms of elimination of clinically relevant tumors by killer cells of the immune system.
Libigerová, Martina ; Bezouška, Karel (advisor) ; Bosáková, Zuzana (referee)
Carbohydrates have an essentials role in wide range of biological phenomena. It is well known that most of the eukaryotic proteins are glycosylated and that their glycosylation undergoes dynamic changes, nevertheless the biological imperative for these modifications is still not fully understood. However, one area in which the importace of cell surface glycosylation has recently been the subject of active investigations is the tumor plasma membrane biology, where many changes in glycosylation have been found useful for diagnosis, and mostly recent, even for the therapies of malignant disease. Interestingly cell surface glycoconjugates, namely N-linked and O-linked oligosaccharides have been found therapeutically attractive for treatment of certain tumors. And although our understanding of the participation of these principal glycan classes in tumorigenesis is far from complete, there are already several examples of carbohydrate-based antitumor vaccines. Therefore, we decided to give this issue more attention, especially the molecular mechanisms responsible for identifying changes in glycosylation of the surface of tumor cells of the immune system. Although in the past in our laboratory identified a receptor-type lectin specific lectin receptors on natural killer cells, very little is yet known...
Charakterizace vlivu senescence na indukci a regulaci smrti nádorových buněk
Nováková, Gita ; Anděra, Ladislav (advisor) ; Truksa, Jaroslav (referee)
4 Abstract Senescence is a specific cell state distinquished by cessation of cell division and proliferation and changes in gene expression. Normal cells enter senescence after distinct number of cell divisions or in case of an unrepairable damage. Senescence in cancer cells can be induced by subliminal stress as sublethal treatment with certain drugs. Senescent cancer cells persist in the tissue and may secrete a number of factors and nutrients affecting surrounding cells. Senescence can thus change the response of cancer cells to various apoptogens during cancer therapy. In this study, we focused on the elucidation of presumed differences between normal proliferating and senescent cancer cells in their response to selected apoptogens. Implementing bromodeoxyuridine (BrdU)-mediated replication stress in cancer cells derived from pancreatic (PANC-1) or mesothelioma (H28) tumors, we efficiently forced these cells to acquire senescent phenotype. We document that these senescent cells gain higher resistance to combined TRAIL and homoharringtonine (HHT) treatment and enhance sensitivity to other apoptogens such as FasL, camptothecin and mVES. These cells also showed increased expression of anti-apoptotic protein c-FLIP in senescent cells and changes in the expression of some Bcl-2 family proteins....
Activation and regulation of cell death in senescent cancer cells.
Holíček, Peter ; Anděra, Ladislav (advisor) ; Drbal, Karel (referee)
Cellular senescence is a distinct cell state, characteristic by cessation of cell proliferation and it is accompanied by specific morphological and biochemical alterations. Increasing and persisting incidence of senescence cells has been shown to have detrimental effect on an organism largely contributing to its ageing. Senescent cells also positively support tumour growth and can even stimulate carcinogenic transformation of surrounding cells. Moreover, senescence can be induced even in tumour cells spontaneously or by chemotherapy. Regardless of an initial stimuli and type of cells, there are two main senescence inducing pathways p16/pRb and p53/p21. Both senescent cells as well as senescent cancer cells seems to have modified apoptotic signalling at the level of mitochondria and Bcl-2 family proteins. In this study, we aimed to analyse effect of senescent state as well as pre-senescent (growth arrested state) induced by p16/pRb and p53/p21 signalling pathways on the response of H28 mesothelioma cancer cells-derived clonal cultures to various cell death-inducing stimuli. By inducible expression of p16 and p21 proteins in doxycycline-dependent manner, we forced cells to acquire senescent-like phenotype, which we detailly characterised. Our results showed that senescent-like phenotype, manifests...
Protinádorová aktivita a cílená doprava rutinu
Durďáková, Michaela
The diploma´s thesis “Antitumor activity and targeted transport of rutin” deals with the effect of flavonoid rutin on tumor and non-tumor cells. The thesis is divided into the theoretical part and practical part. The theoretical part deals with rutin itself, tumor diseases and nanocarrier apoferritin. The practical part has three main parts. The first one deals with the properties of the rutin itself, its stability for storage and stability in solutions simulating distinct physiological environments. Furthermore, toxicity of rutin for tumor and non-tumor cells and the effect on the expression of proteins involved in the malignant potential of tumor cells were investigated. The second part deals with encapsulation of rutin into apoferritin (to form aporutin), characterization of this complex by means of its stability and toxicity for tumor and non-tumor cells. The third and last part focuses on a combined therapy in terms, of the synergistic action of rutin/aporutin together with doxorubicin on tumor and non-tumor cells was investigated.
Activation and regulation of cell death in senescent cancer cells.
Holíček, Peter ; Anděra, Ladislav (advisor) ; Drbal, Karel (referee)
Cellular senescence is a distinct cell state, characteristic by cessation of cell proliferation and it is accompanied by specific morphological and biochemical alterations. Increasing and persisting incidence of senescence cells has been shown to have detrimental effect on an organism largely contributing to its ageing. Senescent cells also positively support tumour growth and can even stimulate carcinogenic transformation of surrounding cells. Moreover, senescence can be induced even in tumour cells spontaneously or by chemotherapy. Regardless of an initial stimuli and type of cells, there are two main senescence inducing pathways p16/pRb and p53/p21. Both senescent cells as well as senescent cancer cells seems to have modified apoptotic signalling at the level of mitochondria and Bcl-2 family proteins. In this study, we aimed to analyse effect of senescent state as well as pre-senescent (growth arrested state) induced by p16/pRb and p53/p21 signalling pathways on the response of H28 mesothelioma cancer cells-derived clonal cultures to various cell death-inducing stimuli. By inducible expression of p16 and p21 proteins in doxycycline-dependent manner, we forced cells to acquire senescent-like phenotype, which we detailly characterised. Our results showed that senescent-like phenotype, manifests...
The localization and transport of extracellular matrix proteases
Lyková, Dominika ; Tolde, Ondřej (advisor) ; Doubravská, Lenka (referee)
Metastasis is the main cause of death from solid cancer. The dissemination of cancer cells from a primary tumour is a very complex process that involves many steps and cells must overcome many obstacles to colonize distant organs. The tumour microenvironment influences the mode and the dynamics of invasion of cancer cells. Cancer cells have the ability to adapt to distinct environmental conditions in order to stay motile. Invasive cancer cells form membrane protrusions called invadopodia that are able to degrade extracellular matrix. The formation of invadopodia by cancer cells is interconnected to the production of matrix metalloproteases (MMPs). Metastasizing tumour cells use MMPs to break through extracellular matrix barriers and migrate in dense matrix. Both invadopodia formation and MMPs secretion is crucial for the degradation of the extracellular matrix. The most important is the membrane bound MMP-14 (MT1-MMP) and soluble MMP-2 and MMP-9. The invasive structures of tumour cells and the proteolytic enzymes in 2D environment is well described. However, a suitable model of localization and transport of MMPs and connection with invadopodia of tumour cells in 3D environment is still lacking. This diploma thesis focused on the extension of current knowledge of these key MMPs and on the...
Charakterizace vlivu senescence na indukci a regulaci smrti nádorových buněk
Nováková, Gita ; Anděra, Ladislav (advisor) ; Truksa, Jaroslav (referee)
4 Abstract Senescence is a specific cell state distinquished by cessation of cell division and proliferation and changes in gene expression. Normal cells enter senescence after distinct number of cell divisions or in case of an unrepairable damage. Senescence in cancer cells can be induced by subliminal stress as sublethal treatment with certain drugs. Senescent cancer cells persist in the tissue and may secrete a number of factors and nutrients affecting surrounding cells. Senescence can thus change the response of cancer cells to various apoptogens during cancer therapy. In this study, we focused on the elucidation of presumed differences between normal proliferating and senescent cancer cells in their response to selected apoptogens. Implementing bromodeoxyuridine (BrdU)-mediated replication stress in cancer cells derived from pancreatic (PANC-1) or mesothelioma (H28) tumors, we efficiently forced these cells to acquire senescent phenotype. We document that these senescent cells gain higher resistance to combined TRAIL and homoharringtonine (HHT) treatment and enhance sensitivity to other apoptogens such as FasL, camptothecin and mVES. These cells also showed increased expression of anti-apoptotic protein c-FLIP in senescent cells and changes in the expression of some Bcl-2 family proteins....
Effect of cancer-associated fibroblasts on the survival, proliferation and invasiveness of cancer cells.
Nováková, Gita ; Anděra, Ladislav (advisor) ; Brábek, Jan (referee)
Tumour microenvironment, in addition to cancer cells themselves, represents important structural and functional part of the tumour. Similarly to the normal organs tumour microenvironment comprises several cell types (fibroblasts, immune cells, endothelial cells etc.) and non-cellular components, particularly extracellular matrix. All of them form favourable conditions for the growth, proliferation, protection from the immune system- mediated destruction and nutrition of cancer cells. Cancer associated fibroblasts (CAFs) represent the most abundant cell type of tumour microenvironment. Their origin can be traced to local normal fibroblasts, endothelial cells or epithelial cells and the transition into the CAFs phenotype is influenced with several factors secreted by cancer cells (particularly TGF-β). In contrast to fibroblasts activated during wound healing newly formed cancer associated fibroblasts expressing α-SMA are not subsequently eliminated from the respektive tissue. They persist and produce a number of pro-tumorigenic factors - SDF-1, HGF, IGF-1, IL-6, VEGF, PDGF-C, TGF-β, MMPs etc. CAFs and their secreted factors target several signalling pathways enhancing basic characteristics of the tumour, so called Hallmarks of Cancer. Cancer associated fibroblasts promote proliferation and invasiveness of...
The role of caspase 2 in apoptosis induction in tumor cells.
Schmiedlová, Martina ; Horníková, Lenka (referee) ; Kovář, Jan (advisor)
Within the cell, caspase-2 probably fulfills several functions. Caspase-2 can be involved in apoptosis induction, DNA repair as well as cell cycle regulation. Caspase-2 has the character of initiator and also executioner caspase. A stimulus for caspase 2 activation can be oxidative stress or DNA damage. Caspase-2 is activated by cleavadge during an interaction with protein complexes. One of protein complexes,i.e. PIDDosome, is made of protein PIDD, RAIDD and pro-caspase-2. Withine the PIDDosome, caspase-2 is activated. Activated caspase-2 occures in a short S form and in long L form. L form of caspase-2 has proapoptotic effects and S form of caspase-2 has antiapoptotic effects. Caspase-2S has been only detected on mRNA level but not on protein level. The main role of caspase-2L is apoptosis induction in normal and tumor cells. Caspase-2 in tumour cells is activated by extrinstic as well as intristic apoptotic pathway. Apoptosis induction by caspase-2 is for example studied in connection with breast cancer treatment with taxanes. Caspase-2 ability of apoptosis induction in cancer cells independently of p53 protein is employed in cancer treatment including overcoming the resistance to apoptosis induction which is based on loosing p53 activity. Caspase-2 is involved in apoptosis induction by different...

National Repository of Grey Literature : 23 records found   previous11 - 20next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.