National Repository of Grey Literature 86 records found  previous11 - 20nextend  jump to record: Search took 0.01 seconds. 
Design of synchronous reluctance motor
Koshelev, Maxim ; Ondrůšek, Čestmír (referee) ; Vítek, Ondřej (advisor)
Master thesis deals with analysis of the definite synchronous reluctance motor with salient poles and design of synchronous reluctance motor with barriers for magnetic flux. The work is divided into five parts. In the first part there is a brief overview of realized synchronous reluctance motor designs and also operating principle of motor of this type is described. The next part contains the basic parameters of the synchronous reluctance motor with salient poles; the parameters were found with analytical calculation. The third part demonstrates verified by means of FEMM results of analytical calculations for linear and nonlinear states and with transient analysis of motor using Ansys Maxwell environment. In the following part results of testing of the synchronous reluctance motor with salient poles are presented as well as the comparation of these results with calculated values and the results of simulations. The closing part of the thesis shows the design of synchronous reluctance motor with barriers for magnetic flux. All obtained parameters were examined using FEMM and Ansys Maxwell. The final version of the proposed motor was analysed when supplied directly by mains and through the converter by Maxwell- Simplorer co-simulation.
Magnetic field mesurement on electrical machines
Manduch, Viliam ; Skalka, Miroslav (referee) ; Mikulčík, Aleš (advisor)
This bachelor thesis deals with magnetic field and the principles on which sensors for it´s measuring are based on. The following part of the bachelor work investigates the distibution of magnetic field in the environs of asynchronous engine. Analysis is evaluated with the assistance of graphical processing of measured values and a part of the analysis is also the comparison of this values with the values calculated with assistence of the method of final compoments in program FEMM.
Coilgun
Kovařík, Martin ; Pavlík, Michal (referee) ; Šteffan, Pavel (advisor)
This bachelor’s thesis describes the design and construction of electromagnetic gun for testing projectiles from different ferromagnetic materials with maximal power 19 J. Conventional projectile propulsion mechanisms include the use of compressed air or explosion which places theoretical limits on the maximum muzzle velocity limited by laws of thermodynamics. The electromagnetic coil gun, explores the use of electromagnetism in accelerating projectiles which offers a much higher theoretical limit on muzzle velocity. In addition of an electromagnetic acceleration is possible to regulate output velocity/energy of projectile, and acceleration applied on projectile.
Design and analysis of permanent magnet synchronous machines
Blaha, Jan ; Cipín, Radoslav (referee) ; Vítek, Ondřej (advisor)
Characteristics of synchronous machines with permanent magnets depend among others on geometric layout of the machine section. Unlike EC motors, where rectangular arrangement of quantities is suitable, these machines require sinusoidal behaviour. Specific forming of individual machine parts is partially derived from this requirement. This thesis deals with design of such machines, including various geometrical modifications of their sections and examination of influence of those modifications. The thesis includes also analytical calculation procedure of machine parameters as well as verification of final characteristics using the finite element method. It results in a combination of various design methods. FEMM, Maxwell RMxprt and Maxwell 2D Transient Analysis programs were used for verification. Individual modifications of machine geometries are applied to machines with concentrated windings with different ratio of number of slots and poles, and differences between machines and results of individual methods are compared.
Dynamic model of synchronous machine with magnetic equivalent circuit
Svetlík, Martin ; Huzlík, Rostislav (referee) ; Ondrůšek, Čestmír (advisor)
The thesis focuses on constructing dynamic model - synchronous generator with using magnetic equivalent circuit diagrams. The model construction is based on knowledge of geometric parameters, magnetic characteristic of used material and fyzical deployment of vindings placed in stator slots. Computed reults are compared with results optained from model created with finite element method.
Thermal Calculations of Permanent Magnet Motors in High Current Technology
Deeb, Ramia ; Singule, Vladislav (referee) ; Duroň,, Jiří (referee) ; Aubrecht, Vladimír (advisor)
Práce se zabývá výpočty magnetických a tepelných vlastností servomotoru s permanentními magnety (motor M718 I vyráběný firmou VUES s.r.o. v Brně). Všechny uvedené výpočty jsou založené na numerických metodách konečných prvků a konečných objemů. 2D magnetická analýza motoru byla řešena s pomocí programu FEMM, zatímco pro 3D analýzu byl využit software ANSOFT. Magnetické analýzy umožnily stanovit rozložení magnetického pole v motoru a ve vzduchové mezeře. Ztráty způsobené vířivými proudy byly počítány v závislosti na rozměrech permanentních magnetů a velikosti toku magnetické indukce ve vzduchové mezeře. U 3D modelu v programu ANSOFT byly vypočítány i Joulovy ztráty. Pro daný servomotor byly navrženy dva způsoby chlazení. V prvním případě se jedná o vnitřní chladicí systém. K původnímu modelu motoru byly přidány některé modifikace (otvory v rámu motoru a radiální ventilátor na hřídeli uvnitř rámu motoru). U druhého způsobu chlazení bylo navrženo vnější chlazení. K původnímu rámu byly přidána chladicí žebra a radiální ventilátor na hřídeli vně rámu motoru. Výpočty proudění a tepelná analýza byly provedeny jak pro původní model motoru, tak i pro modifikovaný návrh (vnitřní a vnější chlazení) pomocí software ANSYS Workbench. Teplotní charakteristiky původního motoru byly měřeny různými senzory. Bylo provedeno porovnání experimentálně získaných výsledků s vypočteným teplotním modelem. Práce byla vytvořena v rámci doktorského studijního programu Elektrotechnika a komunikační technologie, obor Silnoproudá elektrotechnika a elektroenergetika. Podstatná část práce vznikla za podpory Centra výzkumu a využití obnovitelných zdrojů energie a výzkumných projektů CZ.1.05/2.1.00/01.0014 and FEKT S-11-9.
Properties of whiper motor
Kůta, Aleš ; Skalka, Miroslav (referee) ; Janda, Marcel (advisor)
Nowadays a need of numerical computations of different tasks in the area of electrical engeneering is still rising. Common denominator of great demands given on a constructor and ecomonization of manifacturing is a requirement of efficiency. It´s necessary to use a characterictics of construction, own fundamentals and unique attributes of product. Application of Finite Element Method is possible solution which accombines abilities and knowledge of user in consecutive to complexity of computatio. This enables a use of the most optimal solution. This thesis describes a principals of Direct-Current motor and its´ special design: Direct Inductor motor with extrinsic excitation (permanent magnests). It presents a operation of wiper motor in consecutive to wiping systém and fulfillment of engeneering standards. It also describes a principles of Finite Element Method in context to basics of simulation program FEMM. Main attention is given to creation of concrete model and to simulation of gauged exercise with wiper motor. Also there is a second simulation of motor, focused to different type of stator excitation. Findings of thesis is a comparation of theese exercises. Consecution of modeling in software environment is described. It compiles gauged excercise and interprets them.
Electromagnetic levitation
Kondys, David ; Červinka, Dalibor (referee) ; Martiš, Jan (advisor)
The thesis deals with the issue of magnetic levitation. It is divided into two main chapters. The first chapter is focused on a general introduction to magnetic levitation. It describes the types of magnetic levitation, their use and the principle of execution. The end of the chapter is focused on a more detailed description of magnetically levitated MAGLEV trains. It describes the history of these trains, their use and construction. The second chapter is focused on the design of a device for demonstrating magnetic levitation. First, it deals with the simulation of an electromagnetic problem in the FEMM program. In addition, for the selected position configuration of the electromagnet and levitating magnet, it describes the design of the construction of the device in SOLIDWORKS and its manufacture. The result of the work is an attempt to make such a device that can stably keep the levitating magnet in the air.
Axial magnetic bearing as a passive vibration damper
Polák, Robert ; Marada, Tomáš (referee) ; Pruša, Radomír (advisor)
The aim of the bachelor thesis is to design a mathematical model describing the damping effects of a prototype passive axial magnetic bearing. The prototype consists of three permanent axial magnets, the two outer ones are stators and are connected to the base, the middle magnet works as a rotor. Part of the work was a research on the topic of vibration dampers and their mathematical models. An experimental measurement of the dependence of the response of the axial deflection of the rotor on the axial load of the shaft was performed on a prototype bearing. The approach to creating a mathematical model was divided into two parts. First, the geometry of the bearing was simulated using the finite element method programme FEMM and the dependence of the force acting on the rotor magnet as a function of its deflection was determined. In the second part, the permanent magnets were replaced by conductive loops, for which the dependence of the magnitude of the power dissipation on their mutual deflection was compiled by the gradual derivation from the known equations. By connecting these two parts, an equation of motion was created for the middle loop or magnet. Using the Matlab and Simulink programs, this equation was simulated and then the results were compared with experimental measurements. Finally, the measurement and suitability of the mathematical model were evaluated.
Analysis of concentrated windings of PMSM
Menoušek, Lukáš ; Cipín, Radoslav (referee) ; Vítek, Ondřej (advisor)
This thesis deals with the design, principles of permanent magnet synchronous machines and an analysis of their properties. As part of the work is done familiarization with the materials of permanent magnets and their arrangement, as well as construction of the engine where they are discussed types of winding machine configuration, types of motors with permanent magnets and the list of implemented solutions. In the next part of this work is performed analytical calculation of the two types of engines, with concentrated winding, created models based on calculations in FEMM focusing on the creation of spatial harmonics. Further the model in RMxprt and data from the simulations were compared with analytical computation. Finally the model was created in Maxwell and compared with the analytical results of calculation and simulation in RMxprt program. For this model was created analysis of losses in permanent magnets.

National Repository of Grey Literature : 86 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.