National Repository of Grey Literature 32 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Electrochemical Characterization of Nanostructured Surfaces Modified by Substancies with Thiol Bound
Urbánková, Kateřina ; Kynclová, Hana (referee) ; Hrdý, Radim (advisor)
This master thesis deals with nanotechnology, nanoparticles and nanostructured surfaces, electrochemical methods, especially voltammetry, cyclic voltammetry, electrochemical impedance spectroscopy and contact angle measurement. One part is focused on electrodes primarily nanostructured and modified by substancies with thiol bound. Tutorial for preparation of gold nanostructured electrods is introduced in practical section including SEM photos of electrode surface. Nanostructured and bare gold electrodes were modified by 11-mercaptoundecanoic acid, streptavidin, glycine and biotin and measured by cyclic voltammetry, electrochemical impedance spectroscopy and contact angle.
Nanotechnology in construction of sensors for detection of hydrogen
Macháčková, Marina ; Hrdý, Radim (referee) ; Hubálek, Jaromír (advisor)
Aligned arrays of nanostructures has recently attracted great interest because of their unique properties and potential use in a broad range of technological applications. The nanostructures can be employed when it is essential to create large surface on a small area in electronic device as sensor technology or energetics e.g. solar panels. One of the simplest and low-cost methods of fabricating nanostructures is template-assisted electrochemical deposition. This method also enables good control over the nanostructure dimensions and can be used to deposit a wide range of materials. The proposed method consists of two steps. At first, a non-conductive nanoporous template has to be created and then nanostructures are formed by electrodeposition into the template which is coated with a metal on one of its sides or placed on a metal surface.
Nanostructured surfaces for electrochemical detection
Dzuro, Matej ; Hrdý, Radim (referee) ; Drbohlavová, Jana (advisor)
This work deals with the preparation of gold nanostructures for future usage in electrochemical sensors and biosensors, methods for their characterization and production. The emphasis is focused on the template-based electrodeposition method of gold and on study of the effect of manufacturing conditions on physical properties, mainly electrical and topological of nanostructures. Thesis is focused also on overall function and sensitivity of the gold nanostructured electrode.
Optimization of deep reactive ion etching process
Houška, David ; Hrdý, Radim (referee) ; Prášek, Jan (advisor)
This bachelor thesis deals with optimization of cryogenic and Bosch deep reactive ion etching (DRIE) processes. The thesis describes characterization of silicon etching methods, the principle of DRIE and the influence of individual parameters on the resulting etch profile. Based on the analysis of fabricated samples using scanning electron microscopy (SEM), both processes were optimized to create narrow microstructures with diameters ranging from 1 to 16 µm with the highest achieved depth-to-width ratio of 28:1 on a silicon substrate. Furthermore, surface roughness was analyzed using atomic force microscopy (AFM) and the presence of fluorine residues by X-ray photoelectron spectroscopy (XPS) in structures etched by both processes.
Gold nanostructured electrodes characterization modified by biotinyl oligonucleotic particles
Vrbová, Eva ; Drbohlavová, Jana (referee) ; Hrdý, Radim (advisor)
Nowdays, science is trying to develop better technology for production of nanotechnology. This is related to integration into the electrochemistry and biosensors. Bachelor’s thesis deals of biotin oligonucleotide measurement using the electrochemical impedance spectroscopy and voltammetric methods on gold electrodes. The aim of practical part is linking and characterization of biomolecules on the surface of the nanostructured gold electrodes, than the discussion of results and measured data.
Preparation of nanostructures using nanoporous template
Dzuro, Matej ; Hrdý, Radim (referee) ; Drbohlavová, Jana (advisor)
The aim of the work described in this paper is to prepare electrochemically an optical sensor consisting of TiO2 quantum dots (QDs) using nanoporous Al2O3 template in the first step and to modify the surface of QDs with gold layer by evaporation process, again using nanoporous template, in the second step. This easy, cheap and rapid approach provides homogenous and highly ordered distribution of both nanostructures on substrate. The final objective is to characterize the physical parameters and fluorescent properties of TiO2/Au sensor designed for optical detection of biomolecules such as DNA and proteins.
Research and Development of OnChip Solid Amalgam Microelectrode for the Detection of Biomacromolecules
Tkáčová, Tereza ; Drbohlavová, Jana (referee) ; Hrdý, Radim (advisor)
The aim of this thesis is utilising of amalgam electrodes in electrochemistry, especially for diagnostics of biomakromolecules and DNA. There will be designed a suitable method of amalgamation, applicated on 64-electrodes chip system in the practical part. Several substances will be tested on amalgam electrodes and then the results will be processed and evaluated.
Electrochemical biosensor for the study of DNA methylation
Petrula, Jakub ; Hrdý, Radim (referee) ; Hynek, David (advisor)
This bachelor’s thesis deals with design and optimalisation of custom biosensor for detection of methylated DNA. Teoretical part explains the mechanism and importance of DNA methylation. Next section describes analytical methods used in connection with DNA methylation and some basic direct and indirect methods of detection. Final part is dedicated to experiment itself, which is divided into several sections. Section one deals witch modification of working electrode and optimalisation of detection method. Second section introduces two different ways of DNA methylation detection. First is based on direct detection and second one on detection through the biosensor. Final part shows determination of methylcytosine from sample based on analysing characteristic attributes of signal and numeric algorithm based on curve fitting.
Electrochemical impedance spectroscopy as a nanostructured bioelectrodes characterization method
Vrbová, Eva ; Urbánková, Kateřina (referee) ; Hrdý, Radim (advisor)
Diploma thesis deals of nanostructured surfaces, nanoparticles and electrochemical characterization methods such as cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. The aim of this thesis is a theoretical research issues of production and characterization nanostructured modified electrodes. The practical part is the production of biomodified nanostructured electrodes by anodi- zation W/Al layers with galvanic deposition of gold or deposition of mercury, a modifi- cation of the electrodes by 11-mercaptoundecanoic acid and by bovine serum albumin (BSA). The thesis includes SEM images of nanostructured electrodes contact angle mea- surements of these electrodes and form an electrical circuit with subsequent simulation waveforms.
Preparation Techniques and Characterization of Electrodes with Nanostructured Surface
Hrdý, Radim ; Trnková, Libuše (referee) ; Janderka,, Pavel (referee) ; Hubálek, Jaromír (advisor)
Nowadays, nanostructures fixed on solid substrates and colloidal nanoparticles permeate through all areas of human life, in area of sensors and detection as well. This dissertation thesis deals with the fabrication of nanostructures on the surface of planar electrodes via self-ordered nanoporous template of aluminum trioxide. The nanofabrication, as one of many possible techniques, is used to increase the active surface area of electrodes by creating unique surface types with specific properties. These electrodes are very perspective in the applications, such as biomolecules electrochemical detection and measurement. The transformation of aluminum layer into non-conductive nanoporous template in the process of anodic oxidation is a fundamental technique employed to obtain the array of nanostructures in this thesis. The fabrication of high quality nanoporous membranes with narrow pore size distribution on various types of metallic multilayers is one of the key experimental parts in this work. Several problems associated with the production of the thin-film systems, including the dissolving the barrier oxide layer, are discussed and solved. Another part of this work deals with the use of nanoporous membrane as a template for the production of metallic nanostructures via electrochemical metal ions deposition directly into the pores. The obtained nanostructures as nanowires, nanorods or nanodots are characterized by the scanning electron microscopy and energy-dispersive or wavelength X-ray spectroscopy. The electrode surface, modified by gold nanostructures suitable for the detection of biomolecules, has been chosen for the electrochemical measurements, due to the gold biocompatibility. The nanostructured electrodes were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The effect of nanostructured surface geometrical parameters, including the size of the electrochemically active area, on the results of electrochemical measurements has been observed and compared to flat gold electrodes. Two model biomolecules, namely guanine and glutathione, have been chosen for the study of potential application of these nanostructures in biosensors.

National Repository of Grey Literature : 32 records found   1 - 10nextend  jump to record:
See also: similar author names
4 HRDÝ, Roman
4 Hrdý, Roman
1 Hrdý, Rostislav
Interested in being notified about new results for this query?
Subscribe to the RSS feed.