Národní úložiště šedé literatury Nalezeno 72 záznamů.  1 - 10dalšíkonec  přejít na záznam: Hledání trvalo 0.01 vteřin. 
Analyzing a person’s handwriting for recognizing his/her emotional state
Chudárek, Aleš ; Matoušek, Jiří (oponent) ; Malik, Aamir Saeed (vedoucí práce)
Emotion recognition from handwriting is a challenging and interdisciplinary task that can provide insights into the psychological and emotional aspects of the writer. In this study, we developed and evaluated a machine learning model that can predict the emotional state of a writer from their handwriting samples. We utilized the EMOTHAW dataset, which consists of handwriting and drawing samples from subjects whose emotional states are measured by the DASS test, which gives a score for depression, anxiety, and stress and the CIU Handwritten database for verification and experimentation. We extracted a large number of features that are inspired by the standard graphology work, as well as features that are specific to online data. We used ANOVA to select statistically significant features and normalized the data using Z-Score, MinMax, IQR or Log. We reduced the dimensionality of the features using Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). We employed a meta approach Ensemble learning that seeks to reduce the errors of a single model by exploiting the diversity and complementarity of multiple models. The structure of our classifier is dependent on multiple arguments resulting in over 300,000 different configurations. We optimized arguments using argument freezing. We found the best classifiers for binary and trinary classification for each emotion, resulting in six optimal models. We evaluated our models using different metrics, such as accuracy, precision, recall, and F1-score. Our models reached adequate results in all metrics. In addition to finding the classifiers, this thesis explored the importance of each extracted feature, providing a sorted list of the most significant features used for emotion recognition from handwriting. We also enhanced the EMOTHAW database by identifying tasks that are more indicative of specific emotions, thereby reducing the need for a full task battery for emotional analysis.
Genomická predikce založená na hlubokém učení pomocí sítí LSTM
Komjaty, Daniel ; Provazník, Valentine (oponent) ; Schwarzerová, Jana (vedoucí práce)
Tato bakalářská práce se věnuje problematice genomické predikce s využitím predikčních metod založených na strojovém učení. V první části se práce zabývá teoretickou rešerší s užším zaměřením na genomickou predikci a její aplikaci v rámci rostlinných dat. Dále se zabývá predikčními algoritmy a modely založenými na strojovém učení, které se využívají pro genomické predikce. Další část obsahuje podrobnější popis použitých genomických a metabolomických dat poskytnutých od vedoucí práce. Ve čtvrté části je popsána samotná implementace vybraných modelů strojového učení. Poslední pátá část se zabývá zhodnocením modelů strojového učení a diskuzí k výsledkům.
Získávání znalostí z dat pojišťovny
Kříž, Ondřej ; Burgetová, Ivana (oponent) ; Bartík, Vladimír (vedoucí práce)
Tato bakalářská práce se zabývá problematikou získávání znalostí z databází. Jejím cílem je z provozních dat nejmenované pojišťovny sestavit algoritmicky zpracovatelné datasety, které budou následně analyzovány funkcemi knihovny scikit-learn jazyka Python za použitím různých algoritmů z oblasti klasifikace a algoritmu FP-growth v oblasti tvorby silných asociačních pravidel a následné vyhodnocení výsledků.
Detection of modern Slow DoS attacks
Jurek, Michael ; Jonák, Martin (oponent) ; Sikora, Marek (vedoucí práce)
With the evolving number of interconnected devices, the number of attacks arises. Malicious actors can take advantage of such devices to create (D)DoS attacks against victims. These attack are being more and more sophisticated. New category of DoS attacks was discovered that tries to mimic standard user behavior -- Slow DoS Attacks. Malicious actor leverages transport protocol behavior to the highest option by randomly dropping packets, not sending or delaying messages, or on the other hand crafting special payloads causing DoS state of application server. This thesis proposes parameters of network flow that should help to identify chosen Slow DoS Attack. These parameters are divided into different categories describing single packets or whole flow. Selected Slow DoS Attack are Slow Read, Slow Drop and Slow Next. For each attack communication process is described on the transport and application layer level. Then important parameters describing given Slow DoS Attack are discussed. Last section sums up methods and tools of generation of these attacks. Next part deals with possibilities and tools to create such an attack, discuss basic communication concepts of creating parallel connections (multithreading, multiprocessing) and proposes own Slow DoS Attack generator with endless options of custom defined attacks. Next part describes testing environment for the attack generator and tools and scenarios of data capture with the goal of dataset creation. That dataset is used for subsequent detection using machine learning methods of supervised learning. Decision trees and random forest are used to detect important features of selected Slow DoS Attacks.
Rozpoznání dopravních prostředků pomocí signálů snímaných chytrým telefonem
Nevěčná, Leona ; Vítek, Martin (oponent) ; Smíšek, Radovan (vedoucí práce)
Díky vývoji v poslední době přibývá miniaturizovaných senzorů umísťovaných do chytrých telefonů jako jsou akcelerometr, gyroskop, magnetometr, přijímač souřadnic globálního pozičního systému (GPS), mikrofon a dalších. Použití těchto senzorů k rozpoznávání lidské aktivity, za účelem zlepšení péče o zdraví je stále více aktuálním tématem. Výhodou použití chytrého telefonu k sledování aktivity osob je, že se jedná o přístroj, který u sebe měřená osoba má a nejsou s měřením žádné dodatečné náklady, nevýhodou je omezená paměť i kapacita baterie. Proto byly vybrány pouze senzory akcelerometr, gyroskop, magnetometr a mikrofon, jejichž kombinací je dosaženo nejlepšího výsledku. Senzor GPS nebyl použit pro svou energetickou náročnost a hlavně nespolehlivost vzorkování. Z naměřených dat byly vypočítány příznaky, které byly použity pro tvorbu klasifikačního modelu. Nejvyšší úspěšnosti bylo dosaženo metodou strojového učení zvanou náhodný les (angl. Random Forest). Hlavním cílem práce je vytvořit algoritmus pro rozpoznání dopravních prostředků ze signálů naměřených chytrým telefonem. Vytvořený algoritmus zvládá rozpoznání chůze a jízdy autem, autobusem, tramvají, vlakem a na kole s úspěšností 97,4 % při validaci na 20 % pozdržených dat. Při testování na sadě dat od desátého dobrovolníka byla výsledná úspěšnost vypočítaná jako průměr úspěšností rozpoznání jednotlivých druhů přepravy 90,49 %.
Rozšiřující modul platformy 3D Slicer pro segmentaci tomografických obrazů
Chalupa, Daniel ; Jakubíček, Roman (oponent) ; Mikulka, Jan (vedoucí práce)
Tato práce pojednává o využití strojového učení při úlohách klasifikace medicínských obrazů. Obsahuje literární rešerši pojednávající o klasických a moderních metodách segmentace obrazů. Hlavním cílem práce je navržení a vytvoření rozšíření pro platformu 3D Slicer. Rozšíření využívá strojové učení ke klasifikaci obrazů dle zadaných parametrů. Testování rozšíření probíhá na reálných tomografických obrazech z nukleární magnetické rezonance a sleduje přesnost klasifikace a využitelnost v praxi.
Segmentation of amyloid plaques in brains of trangenic rats based on microCT image data
Kačníková, Diana ; Kolář, Radim (oponent) ; Chmelík, Jiří (vedoucí práce)
The presence of amyloid plaques in the hippocampus highlights the incidence of Alzheimer’s disease. Manual segmentation of amyloid plaques is very time consuming and increases the time that can be used to monitor the distribution of amyloid plaques. Distribution carries significant information about disease progression and the impact of potential therapy. The automatic or semi-automatic segmentation method can lead to significant savings in the time which are required when the disease has rapid progression. The description of amyloid plaques and the computed tomography are included in this work. In this diploma thesis are three implemented algorithms, two of them are based on published articles and one’s own methodological solution. The conclusion of the thesis is a quantitative evaluation of the accuracy of implemented segmentation procedures.
Sémantické rozpoznávání komentářů na webu
Stříteský, Radek ; Harár, Pavol (oponent) ; Povoda, Lukáš (vedoucí práce)
Hlavním cílem semestrálního projektu je rozpoznávání komentářů na webových strán- kách. Teoretická část je zaměřena na umělou inteligenci, zejména se zde popisují klasi- fikátory. Praktická část se věnuje sestavení trénovací databáze, která se vytváří pomocí generátorů příznaků. Vygenerovaný příznak může být například název HTML elementu, ve kterém se nachází komentář. Vstupem klasifikátorů je vytvořená trénovací databáze. Výsledkem práce je testování klasifikátorů v programu RapidMiner.
Hledání anomálií v DNS provozu
Vraštiak, Pavel ; Slaný, Karel (oponent) ; Matoušek, Petr (vedoucí práce)
Tato diplomová práce je napsána ve spolupráci s firmou NIC.CZ a zabývá se anomáliemi v provozu systému DNS. Obsahuje popis základních principů tohoto systému a vlastností, kterými se jeho provoz vyznačuje. Účelem této práce je pokusit se vytvořit klasifikátor některých z anomálií v této práci uvedených a ověřit jeho schopnosti teoreticky i v praktických podmínkách.
Laptop Touchpad Palm Detection with AI/ML
Menzyński, Mark Alexander ; Kavetskyi, Andrii (oponent) ; Drahanský, Martin (vedoucí práce)
The situation about palm rejection for laptops is less than ideal. Most research focuses on touchscreens, and there is minimal research on touchpads. Some research is possibly done privately in laptop manufacturer companies, but the technology is lacking behind regardless. This thesis explores several shallow and deep machine learning models and finds their accuracy to be very much sufficient. In addition, a real-time proof of concept is implemented to demonstrate the model's capabilities.

Národní úložiště šedé literatury : Nalezeno 72 záznamů.   1 - 10dalšíkonec  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.