Název: 3D-bioprinted Gelatin/Alginate loaded with Carbon Nanotubes for tissue engineering application
Autoři: Partovi Nasr, Minoo ; Zumberg, Inna ; Chmelíková, Larisa ; Fohlerová, Zdenka ; Provazník, Valentine
Typ dokumentu: Příspěvky z konference
Jazyk: eng
Nakladatel: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Abstrakt: The objective of utilizing 3D-bioprinted Gelatin/Alginate loaded with Carbon Nanotubes (CNTs) in tissue engineering applications is to create scaffolds that closely mimic the natural extracellular matrix (ECM), thereby enhancing cell growth, proliferation, and differentiation. Gelatin and Alginate, both biocompatible materials, have been widely researched for their potential in bioprinting due to their similarity to the ECM, offering a conducive environment for cell encapsulation and tissue regeneration. The addition of CNTs to these hydrogels significantly improves the mechanical properties and stability of the scaffolds, making them more suitable for supporting tissue development. CNTs, known for their unique properties such as high tensile strength and electrical conductivity, contribute to the development of scaffolds that not only support mechanical stability but also can influence cellular behavior and tissue formation. This integration aims at enhancing the functionality of 3D-bioprinted scaffolds, enabling them to better support the formation and maturation of engineered tissues. Furthermore, the electrical conductivity of CNTs-loaded scaffolds can be exploited to stimulate electrical activity in tissues, such as cardiac and neural tissues, promoting organized tissue development and functionality. The strategic combination of Gelatin/Alginate with CNTs in 3D bioprinting offers a promising approach to tissue engineering, aiming to address the critical challenge of replicating the complex structure and function of natural tissues. This innovative methodology not only enhances the mechanical and structural properties of the scaffolds but also introduces new possibilities in tissue engineering through the electrical stimulation of tissues, paving the way for the creation of more complex and functional tissue constructs.
Klíčová slova: Alginate; Carbon Nanotubes; Gelatin; Keywords—3D-bioprinting; Tissue engineering
Zdrojový dokument: Proceedings I of the 30st Conference STUDENT EEICT 2024: General papers, ISBN 978-80-214-6231-1, ISSN 2788-1334

Instituce: Vysoké učení technické v Brně (web)
Informace o dostupnosti dokumentu: Plný text je dostupný v Digitální knihovně VUT.
Původní záznam: https://hdl.handle.net/11012/249232

Trvalý odkaz NUŠL: http://www.nusl.cz/ntk/nusl-622523

 Záznam vytvořen dne 2024-07-21, naposledy upraven 2024-07-21.


Není přiložen dokument
  • Exportovat ve formátu DC, NUŠL, RIS
  • Sdílet