Original title:
Využití hlubokých neuronových sítí pro vyhodnocení metalografických výbrusů
Translated title:
The use of deep neural networks for the evaluation of metallographic cross-sections
Authors:
Semančík, Adam ; Mendřický, Radomír (referee) ; Hurník, Jakub (advisor) Document type: Master’s theses
Year:
2024
Language:
eng Publisher:
Vysoké učení technické v Brně. Fakulta strojního inženýrství Abstract:
[eng][cze]
Táto diplomová práca skúma aplikáciu hlbokých neurónových sietí pre vylepšenie hodnotenia metalografických výbrusov pre materiály vyrobené pomocou aditívnej výroby. Zameriava sa na dve pokročilé techniky spracovania obrazu: sémantickú segmentáciu a super-rozlíšenie obrazu. Na sémantickú segmentáciu bola použitá architektúra U-Net pre klasifikáciu defektov, ako sú dva typy pórov. Okrem toho bol použitý model SRGAN (Super-Resolution Generative Adversarial Network) pre zvýšenie rozlíšenia obrazu, čo potenciálne zlepšuje presnosť segmentácie. Výskum hodnotí, či model trénovaný na AlSi10Mg môže dostatočne dobre vyhodnocovať materiály Cu99 a Ti6Al4V. Zároveň hodnotí vplyv super-rozlíšenia na výkonnosť segmentácie. Výsledky ukázali, že zatiaľ čo model segmentácie dosahoval dobré výsledky na AlSi10Mg, generalizácia na iné materiály vyžaduje diverzifikovanejšie tréningové dáta. V dôsledku výpočtových obmedzení zostáva kombinovaný efekt super-rozlíšenia a segmentácie nejednoznačný, čo naznačuje potrebu ďalšieho výskumu s výkonnejšími výpočtovými zdrojmi.
This thesis explores the application of deep neural networks to improve the evaluation of metallographic cross-sections in materials produced through powder bed fusion. It focuses on two advanced image processing techniques: semantic segmentation and image super-resolution. A U-Net architecture was used for semantic segmentation to classify defects such as lack of fusion porosity and gas porosity. Additionally, an SRGAN (Super-Resolution Generative Adversarial Network) model was utilized to upscale image resolution, potentially enhancing segmentation accuracy. The research assesses whether a model trained on AlSi10Mg can generalize to Cu99 and Ti6Al4V and evaluates the influence of super-resolution on segmentation performance. Results showed that while the segmentation model performed well on AlSi10Mg, generalization to other materials required more diverse training data. Due to computational limitations, the combined effect of super-resolution and segmentation remains inconclusive, suggesting further research with enhanced computational resources.
Keywords:
aditívna výroba; hlboké neurónové siete; metalografické výbrusy; spracovanie obrazu; SRGAN; strojové učenie; super-rozlíšenie; sémantická segmentácia; U-net; additive manufacturing; deep neural networks; image processing; machine learning; metallographic cross-sections; powder bed fusion; semantic segmentation; SRGAN; super-resolution; U-net
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: https://hdl.handle.net/11012/248145