Název:
Generování trénovacích dat pomocí GAN pro odhad věku z fotografie
Překlad názvu:
GAN Generated Data for CNN Age Estimation
Autoři:
Venkrbec, Tomáš ; Herout, Adam (oponent) ; Hradiš, Michal (vedoucí práce) Typ dokumentu: Diplomové práce
Rok:
2023
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta informačních technologií
Abstrakt: [cze][eng]
Cílem této práce je implementace některé z nejmodernějších metod generativních neuronových sítí a návrh jejího rozšíření o podmíněné generování. To bylo využito pro generování fotorealistických snímků lidských tváří se specifikovanými charakteristikami, jako například věk a pohlaví. K tomuto účelu byla sloučením a čištěním existujících anotovaných datových sad obličejů vytvořena velmi různorodá datová sada, čítající přes 230 tisíc vzorků. Hojně jsou v ní zastoupeny všechny věkové kategorie, pohlaví a různé etnické skupiny. StyleGAN2 generátorem natrénovaným na této datové sadě bylo dosaženo hodnoty FID 7,14. S poměrem syntetických dat bylo následně experimentováno při trénování klasifikátoru věku. V případě testovací podmnožiny datové sady bylo přidáním syntetických dat docíleno snížení střední absolutní chyby z 3,499 roku na 3,294 roku. U nezávislé testovací datové sady došlo ke snížení průměrné chyby z 4,012 roku na 3,875 roku.
The goal of this thesis is to implement one of the state-of-the-art methods of generative adversarial networks and to propose its extension to conditional generation. This has been used to generate photorealistic images of human faces with specified characteristics such as age and gender. For this purpose, a highly diverse dataset of over 230,000 samples was created by merging and cleaning existing annotated face datasets. All ages, genders and different ethnic groups are well represented in it. StyleGAN2 generator trained on this dataset achieved a FID of 7.14. The synthetic data ratio was then experimented with during age classifier training. For the test subset of the dataset, the addition of synthetic data achieved a reduction in the mean absolute error from 3.499 years to 3.294 years. For the independent test dataset, a reduction in mean error from 4.012 years to 3.875 years was achieved.
Klíčová slova:
generování obličejů; hluboké učení; odhadování věku; podmíněné generativní neuronové sítě; strojové učení; StyleGAN; age estimation; conditional generative adversarial networks; deep learning; face generation; machine learning; StyleGAN
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/213227