Název:
GPU-akcelerovná syntéza pravděpodobnostních programů
Překlad názvu:
GPU-Accelerated Synthesis of Probabilistic Programs
Autoři:
Marcin, Vladimír ; Matyáš, Jiří (oponent) ; Češka, Milan (vedoucí práce) Typ dokumentu: Diplomové práce
Rok:
2021
Jazyk:
eng
Nakladatel: Vysoké učení technické v Brně. Fakulta informačních technologií
Abstrakt: [eng][cze]
V tejto práci sa zoberáme problémom automatizovanej syntézy pravdepodobnostných programov: majme konečnú rodinu kandidátnych programov, v ktorej chceme efektívne identifikovať program spĺňajúci danú špecifikáciu. Aj riešenie tých najjednoduchších syntéznych problémov v praxi predstavuje NP-ťažký problém. Pokrok v tejto oblasti prináša nástroj Paynt, ktorý na riešenie tohto problému používa novú integrovanú metódu syntézy pravdepodobnostných programov. Aj keď sa tento prístup dokáže efektívne vysporiadať s exponenciálnym rastom rodín kandidátnych riešení, stále tu existuje problém spôsobený exponenciálnym rastom jednotlivých členov týchto rodín. S cieľom vysporiadať sa aj s týmto problémom, sme implementovali GPU orientované algoritmy slúžiace na overovanie kandidátnych programov (modelov), ktoré danú úlohu paralelizujú na stavovej úrovni pravdepodobnostých modelov. Celkové zrýchlenie doshiahnuté týmto prístupom za určitých podmienok potom prinieslo takmer teoretický limit možného zrýchlenia syntézneho procesu.
This paper examines the problem of automatic synthesis of probabilistic programs: having a finite family of candidate programs, how can one efficiently identify a program that satisfies a given specification. Even the most straightforward synthesis problems prove to be NP-hard. An improvement to this state of practice is brought by the PAYNT tool, which tackles this problem with a novel integrated technique for synthesising probabilistic programs. Even though it efficiently deals with the exponential growth of the family size, there is still a problem with the underlying state-space explosion. To solve this problem, we have implemented GPU-oriented model-checking algorithms that takes advantage of the GPU architecture and parallelise the task at a state level of a probabilistic model. The overall acceleration that we were able to achieve with this approach was, under certain conditions, close to the theoretically possible limit of the acceleration of the whole synthesis process.
Klíčová slova:
CUDA; Discrete-Time Markov Chains; Markov Decision Processes; Model-Checking; Parallelisation; Synthesis of Probabilistic Programs; CUDA; diskrétne Markovove reťazce; Markovove rozhodovacie procesy; overovanie modelov; paralelizácia; syntéza pravdepodobnostných programov
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/200190