Název:
Teorie a algebry formulí
Překlad názvu:
Theories and algebras of formulas
Autoři:
Garlík, Michal ; Mlček, Josef (vedoucí práce) ; Glivický, Petr (oponent) Typ dokumentu: Diplomové práce
Rok:
2011
Jazyk:
cze
Abstrakt: [cze][eng] V předložené práci studujeme teorie prvého řádu a jejich Lindenbaumovy algebry zkoumáním vlastností řetězu BnT n<ω, nazvaného B-řetěz, kde BnT je podalgebra Lindenbaumovy algebry daná formulemi s nejvýše n volnými proměnnými. Obohatíme strukturu Lindenbaumovy algebry, abychom zachytili rozdíly mezi teoriemi, jejichž B-řetězy jsou člen po členu izomorfní. Podáme několik příkladů teorií a spočítáme jejich B-řetězy. Zkonstruujeme model Robin- sonovy aritmetiky s n-tou algebrou definovatelných množin izomorfní kartézskému součinu spočetné atomární saturované Booleovy algebry a spočetné bezatomární Booleovy algebry. 1In the present work we study first-order theories and their Lindenbaum alge- bras by analyzing the properties of the chain BnT n<ω, called B-chain, where BnT is the subalgebra of the Lindenbaum algebra given by formulas with up to n free variables. We enrich the structure of Lindenbaum algebra in order to cap- ture some differences between theories with term-by-term isomorphic B-chains. Several examples of theories and calculations of their B-chains are given. We also construct a model of Robinson arithmetic, whose n-th algebras of definable sets are isomorphic to the Cartesian product of the countable atomic saturated Boolean algebra and the countable atomless Boolean algebra. 1
Klíčová slova:
Booleova algebra; Lindenbaumova algebra; teorie prvého řádu; Boolean algebra; first order theory; Lindenbaum algebra