Název:
Robustness Aspects of Knowledge Discovery
Autoři:
Kalina, Jan Typ dokumentu: Příspěvky z konference Konference/Akce: Znalosti 2013, Ostrava (CZ), 2013-10-13 / 2013-10-15
Rok:
2013
Jazyk:
eng
Abstrakt: The sensitivity of common knowledge discovery methods to the presence of outlying measurements in the observed data is discussed as their major drawback. Our work is devoted to robust methods for information extraction from data. First, we discuss neural networks for function approximation and their sensitivity to the presence of noise and outlying measurements in the data. We propose to fit neural networks in a robust way by means of a robust nonlinear regression. Secondly, we consider information extraction from categorical data, which commonly suffers from measurement errors. To improve its robustness properties, we propose a regularized version of the common test statistics, which may find applications e.g. in pattern discovery from categorical data.
Klíčová slova:
machine learning; neural networks; outliers; robust estimation Číslo projektu: GA13-01930S (CEP) Poskytovatel projektu: GA ČR Zdrojový dokument: Datakon a Znalosti 2013. Part II, ISBN 978-80-248-3189-3
Instituce: Ústav informatiky AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v příslušném ústavu Akademie věd ČR. Původní záznam: http://hdl.handle.net/11104/0225084