Název:
Gaussian Radial and Kernel Networks with Varying and Fixed Widths
Autoři:
Kůrková, Věra Typ dokumentu: Příspěvky z konference Konference/Akce: SOFSEM 2013. Conference on Current Trends in Theory and Practice of Computer Science /39./, Špindlerův Mlýn (CZ), 2013-01-26 / 2013-01-31
Rok:
2013
Jazyk:
eng
Abstrakt: The role of widths of Gaussians in computational models which they generate is investigated. Suitability of Gaussian kernel models with fixed widths for regression is proven in terms of their universal approximation capability. Large sets of argminima of error functionals minimized during learning from data over Gaussian networks with varying widths are described. Dependence of stabilizers modelling generalization on widths of Gaussian kernels and the input dimension is estimated.
Klíčová slova:
functionally equivalent networks; Gaussian radial and kernel networks; stabilizers defined by Gaussian kernels; universal approximators Číslo projektu: GAP202/11/1368 (CEP) Poskytovatel projektu: GA ČR Zdrojový dokument: SOFSEM 2013: Theory and Practice of Computer Science, ISBN 978-80-87136-15-7
Instituce: Ústav informatiky AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v příslušném ústavu Akademie věd ČR. Původní záznam: http://hdl.handle.net/11104/0218073