National Repository of Grey Literature 31,381 records found  1 - 10nextend  jump to record: Search took 0.94 seconds. 

The use of natural materials for the creative activities of children at the nursery school
ŠAFRÁNKOVÁ, Helena
The aim of this thesis is to point out the essentiality of the use of natural materials for creative activities and playing at the nursery school. Using natural materials is the easiest way for children to make empirical knowledge of the resources and the environment they live in, which creates and enforces a positive relationship towards the living environment, the understanding of the connections within and the importace of its protection. This thesis contains several suggestions how to make use of natural materials suitable for children at nursery schools and describes the practical realization of some of these projects as well as its preparation and subsequent evaluation.

Optimising the material-handling equipment at Nestlé Česko s.r.o., plant ZORA Olomouc
Kovář, Jiří ; Jirsák, Petr (advisor) ; Suchánek, Miroslav (referee)
This thesis discusses the optimal way of material-handling equipment replacement at Nestlé Česko s.r.o., plant ZORA Olomouc. The theoretical part describes the issue of warehousing in general and focuses on the material-handling equipment and vehicles. The following analytical part focuses specifically on the company Nestlé Česko s.r.o., particularly the plant ZORA Olomouc with the foremost aim of analysing and optimising the current material-handling equipment.

INFLUENCE OF LASER CUTTING AND PUNCHING ON MAGNETIC PROPERTIES\nOF ELECTRICAL STEEL M470-50A
Bulín, Tomáš ; Švábenská, Eva ; Hapla, Miroslav ; Ondrůšek, Č. ; Schneeweiss, Oldřich
Electrical steel M470-50A belongs to the most often used materials in electrical machines. Due to this fact, it is desirable to know the magnetic parameters after processing raw sheets into the required shape. Basic parameters of mechanical, electrical, and magnetic properties of the sheets are usually obtained from the producer but the magnetic properties are changing in dependence on additional machining processes. The aim of this study is to describe changes in parameters of magnetic behavior after punching, laser and spark cutting of the original sheets. The basic information of structure was obtained by optical and scanning electron microscopy. The magnetic parameters were acquired from the measuring of magnetic hysteresis loops in dependence on saturation fields and frequencies. The results are discussed from the point of view of applied\ncutting technology with the aim to obtain the best magnetic parameters and consequently a higher efficiency of the final product. Results can be used as input parameters in simulation of the electrical machine.

STRAIN ENGINEERING OF THE ELECTRONIC STRUCTURE OF 2D MATERIALS
del Corro, Elena ; Peňa-Alvarez, M. ; Morales-García, A. ; Bouša, Milan ; Řáhová, Jaroslava ; Kavan, Ladislav ; Kalbáč, Martin ; Frank, Otakar
The research on graphene has attracted much attention since its first successful preparation in 2004. It possesses many unique properties, such as an extreme stiffness and strength, high electron mobility, ballistic transport even at room temperature, superior thermal conductivity and many others. The affection for graphene was followed swiftly by a keen interest in other two dimensional materials like transition metal dichalcogenides. As has been predicted and in part proven experimentally, the electronic properties of these materials can be modified by various means. The most common ones include covalent or non-covalent chemistry, electrochemical, gate or atomic doping, or quantum confinement. None of these methods has proven universal enough in terms of the devices' characteristics or scalability. However, another approach is known mechanical strain/stress, but experiments in that direction are scarce, in spite of their high promises.\nThe primary challenge consists in the understanding of the mechanical properties of 2D materials and in the ability to quantify the lattice deformation. Several techniques can be then used to apply strain to the specimens and thus to induce changes in their electronic structure. We will review their basic concepts and some of the examples so far documented experimentally and/or theoretically.

ELECTRON BEAM REMELTING OF PLASMA SPRAYED ALUMINA COATINGS
Matějíček, Jiří ; Veverka, J. ; Čížek, J. ; Kouřil, J.
Plasma sprayed alumina coatings find numerous applications in various fields, where they enhance the properties of the base material. Examples include thermal barriers, wear resistance, electrical insulation, and diffusion and corrosion barriers. A typical structure of plasma sprayed coatings, containing a multitude of voids and imperfectly bonded interfaces, gives them unique properties - particularly low thermal conductivity, high strain tolerance, etc. However, for certain applications such as permeation barriers or wear resistance, these voids may be detrimental.\nThis paper reports on the first experiments with remelting of plasma sprayed alumina coatings by electron beam technology, with the purpose of densifying the coatings and thereby eliminating the voids. Throughout the study, several parameters of the e-beam device were varied - beam current, traverse velocity and number of passes. The treated coatings were observed by light and electron microscopy and the thickness, structure and surface morphology of the remelted layer were determined and correlated with the process parameters. Based on the first series of experiments, the e-beam settings leading to dense and smooth remelted layer of sufficient thickness were obtained. In this layer, a change of phase composition and a marked increase in hardness were observed.\n

Sorption and Stabilization of Metals/Mettalloids by Innovative Synthesized Sorbent Amochar.
Ouředníček, P. ; Trakal, L. ; Komárek, M. ; Pohořelý, Michael
Remediation of contaminated soil which is based on stabilization and immobilization of potential\nhazardous substance by sorption materials has been studied intensively nowadays. Biochar – activated organic carbon belongs to this group of stabilizing agents which can adsorb wide range of contaminants, including metals/metalloids. Surface area of the biochars is quite large in general and functional groups (e.g. COO–) can form chelates or alkaline elements on the surface, which is represented by cation exchange capacity. Altogether with the high pH values (7.00 – 10.00), biochars are quite effective sorbents and can adsorb metals/metalloids from the solution (ground water), especially in acidic soils (in the environments affected by intensive mining activities). Sorption\neffectiveness can be increased (especially for As (V) or Cr (VI) sorption) by modification of biochar by various types of secondary oxides. Innovative sorbent AMOchar (AMO + biochar) has been synthesized currently. The product was prepared by adding of biochar to the reaction solution during amorphous manganese oxide (AMO) synthesis. The AMOchar was formed mainly by Mn-oxalates which had coated surface of the pristine biochar. AMOchar composite was able to remove significantly higher amounts of various metal(loid)s from the solution despite the rather high pH of the material. Sorption effectiveness was high not only in case of Pb (II) sorption (almost 99%), and Cd(II) (51.2%), but also a very high amount of As(V), 91.4%. Additionally, both AMOchar composite was able to reduce Mn leaching. This can avoid potential post-contamination caused by the dissolution of less stable Mn-oxalates as observed in the pure AMO.
Fulltext: content.csg - Download fulltextPDF
Plný tet: SKMBT_22316111113040 - Download fulltextPDF

Erosion protection of slopes from assignment to implementation
Konopecká, Vladislava ; Janeček, Miloslav (advisor) ; Kalibová, Jana (referee)
The thesis is following up on the findings to the issues presented in the Bachelor's thesis, where they were described mainly the methods and materials used to secure the slopes of pipeline, will address not only the final solution method of protection against erosion of the slopes, but in particular all conditioning influences such as the topography, the type and quality of rock and soil in the area of the building, surrounding buildings, and last but not least property relations that can significantly affect the design solution in terms of difficulty of implementation, durability, aesthetics and economic performance of the resulting construction works. Alpha-Omega of the initial phase is the analysis and the interdependence of the issues just for land consolidation, anti-erosion measures, construction procedures in accordance with the geology of the chosen territory and the intended realization of the construction project. The evaluation of the risks associated with this issue on the basis of field investigation, examination with a valid legal legislation, SWOT analysis will be ended.

Time lapse tomography of fracture progress in silicate-based composite subjected to the loading a combination with acoustic emission scanning
Kumpová, Ivana ; Kytýř, Daniel ; Fíla, Tomáš ; Veselý, V. ; Trčka, T. ; Vopálenský, Michal ; Vavřík, Daniel
The initiation and propagation of a fracture in quasi-brittle materials (such as silicatebased composite) is an increasingly discussed topic for which various methods of research have been developed/applied. As the quasi-brittle silicate-based composite compounds are very non-homogenous, the mechanism of the crack initiation and propagation can be very different even for samples with the\nidentical geometry. One possible approach to study the fracture mechanism in quasi-brittle materials is to use several different experimental techniques in a single experiment and perform detail analysis to identify generally valid fracture process phenomena. In this work, a simultaneous monitoring of fracture\nprocess zone formation and propagation by three different methods is presented and discussed. A three point bending test was performed on a notched silicate composite specimen. During the loading process, a highly accurate force displacement dependence was recorded accompanied with X-ray radiography,\nX-ray computed tomogra-phy and acoustic emission scanning.

Corrosion behavior of plasma coatings CuAl10 and CuAl50 on magnesium alloy AZ 91
Kubatík, Tomáš František ; Stoulil, J. ; Stehlíková, K. ; Slepička, P. ; Janata, Marek
The most common magnesium alloy AZ 91 is widely used as a structural material, but its use is limited at higher temperatures and high humidity. Plasma spraying is a technology that allows to prepare protective metallic and non-metallic coatings on a wide variety of substrates including magnesium and its alloys. In this study, CuAl10 and CuAl50 were plasma sprayed on magnesium alloy AZ 91 with the aim to study corrosion resistance of the plasma sprayed coatings. The corrosion resistance of layers was evaluated by the method of electrochemical potentiodynamic measurement as well as long-term corrosion tests in a condensation chamber with 0.5 mol\nNaCl at the temperature of 35 °C for 1344 hours. Layers with 1, 2, 5 passes and passes of CuAl10 with the thickness ranging from 75 to 716 mm and CuAl50 with the thickness ranging from 64 to 566 mm were prepared. The increased corrosion velocity was observed in the case of thin layers of 2 and 5 passes due to the development of a galvanic corrosion couple. The CuAl10 layer prepared with ten passes has an outstanding corrosion resistance.

Study of dielectrical properties of organic material thin films
Pospíšil, Jan ; Boušek, Jaroslav (referee) ; Mikula, Milan (referee) ; Zmeškal, Oldřich (advisor)
The dissertation is focused on the study of electric and especially dielectric properties of thin film organic materials with their huge potential for optoelectronics and other industrial sectors. The theoretical part deals with the use of organic materials in organic photovoltaic cells, the methods of deposition techniques and characterization. The theoretical knowledge of the dielectric spectroscopy, including methods for determining the physical properties and evaluation of experimental data are also described. The experimental part is devoted to the study of small molecule organic solar cells with bulk heterojunction composed of electron donor molecule of DPP(TBFu)2 and electron acceptor fullerene derivatives, such as PC60BM, PC70BM and TC60BM. The experimental part is divided into two main parts. The first part deals with the study of processes occurring at the interface between the active layer and the contact; the second part is focused on transport processes inside the structure of photovoltaic cells and also contains a study of perovskite solar cells.