National Repository of Grey Literature 17 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Diagnostics of plasma generated in water solutions and its application
Holíková, Lenka ; Brablec, Antonín (referee) ; Kozáková, Zdenka (advisor)
This thesis deals with the study of parameters of diaphragm discharge in liquids. NaCl solution of different conductivity was used as a conductive medium. Conductivities were adjusted in the range from 220 to 1000 µS cm-1. Two diagnostic methods were used for the study of plasma parameters. The first one was employed in the laboratory of plasma chemistry at Faculty of Chemistry, Brno University of Technology, namely the optical emission spectroscopy. The second method used for plasma diagnostics was the time resolved ICCD camera at the Laboratoire de Physique des Plasmas at the École Polytechnique in Paris. The reactor for the diagnostics by optical emission spectroscopy had the volume of 4 l, and it was made of polycarbonate. PET diaphragm was placed in the barrier separating the cathode and the anode space. Electrodes were made of titanium coated with platinum. Electric power source supplied a constant DC voltage of maximum 5 kV and electric current up to 300 mA. Spectrometer Jobin Yvon TRIAX 550 with CCD detector was used during the experiments in order to measure overview spectra within the range from 200 to 900 nm as well as OH molecular spectra and Hß line spectra. All spectra were scanned in both discharge polarities, i.e. at the cathode and the anode part of reactor. The basic parameters of the discharge plasma were calculated from the spectra, that means rotational and electron temperature and electron density. Another part of experiment consisted of measurements by the ICCD camera iStar 734. Two types of reactors were used. The first one was the same as the reactor for the measurements by the optical emission spectroscopy. The second one was also made of polycarbonate, but the volume of conductive solution was 110 ml, only. HV electrodes made of stainless steel were placed in this reactor. Ceramic diaphragm (Shapal-MTM) was used in both reactors. Diaphragms had different thickness and diameter of holes. ICCD camera acquired photographs with details of processes of the bubbles generation and discharge operation (propagation of plasma channels), depending on solution conductivity, dimensions of the diaphragm, and with respect to the electrode part of the reactor.
Study of Plasma - Liquid Interactions
Němcová, Lucie ; Brablec, Antonín (referee) ; Obradovic, Bratislav (referee) ; Krčma, František (advisor)
Disertační práce se zabývá detailním studiem vlastností různých elektrických výbojů generovaných ve vodných roztocích. Tyto výboje se staly v posledním desetiletí velmi populárním tématem, a to zejména díky mnoha praktickým využitím jako například v biomedicíně, čištění odpadních vod, ekologii nebo nanoinženýrství. Studium je zaměřeno na generaci peroxidu vodíku, jakožto jednu z nejvýznamnějších částic generovaných právě elektrickými výboji v kapalinách. Pro první část této práce byla využita speciální výbojová komora zkonstruovaná na Fakultě chemické Vysokého Učení Technického v Brně. Komora byla rozdělena tenkou diafragmovou přepážkou na dvě poloviny, přičemž uvnitř přepážky se nacházela malá dírka. V každé části komory se nacházela jedna elektroda, a obě dvě části komory byly vyplněny kapalinou. Ze zdroje bylo do kapaliny aplikováno vysokofrekvenční napětí (1 a 2 kHz), které tak vlastně upravovalo roztok chloridu sodného (1.5 l). Bylo zjištěno, že tento druh napětí, v porovnání s DC, nezpůsobuje nežádoucí přehřívání roztoku (počáteční vodivost 100 - 800 S/cm) během jeho úpravy při zachování účinnosti produkce peroxidu. Experimentální aparatura pro druhou část práce byla sestavena na Gentské Univerzitě v Belgii. Stejnosměrný výboj byl generován v bublinách plynů (He, Ar, N2, vzduch) v prostředí vodných roztoků. Byla studována generace peroxidu vodíku a odbourávání organických barviv přítomných ve zkoumaném roztoku. Ke generaci peroxidu vodíku byl použit roztok NaH2PO4 . 2H2O (5 microS/cm, V= 750 ml), ke zkoumání rozkladu barviv byly použity roztoky organických barviv Direct Red 79 (20 mg/l) a Direct Blue 106 (20 mg/l, V= 750 ml). Minimální koncentrace peroxidu vodíku byla naměřena při aplikaci proudu 10 mA, zatímco maximální koncentrace peroxidu vodíku byla zaznamenána při použití proudu 30 mA. Rozklad organických barviv vykazoval stejné vlastnosti. Čím vyšší byla dodávaná energie, tím více barviva se odbouralo. Třetí část práce probíhala ve spolupráci s Queen's University of Belfast, Centrum for Plasma Physics, UK. K realizaci experimentů bylo využito vysokofrekvenčního plazmového skalpelu (Arthrocar). Bylo zjištěno, že hodnota koncentrace peroxidu vodíku dosahovala maxima v roztocích s nepatrným přídavkem alkoholu (0.25 %). Celkem byly studovány čtyři 0.15 M roztoky BaCl2, Na2CO3, KCl a NaCl (V= 20 ml), jejichž počáteční vodivost se pohybovala kolem 13 mS/cm. Z výsledků bylo patrné, že největší rozdíl hodnot pH byl zaznamenán u roztoků s přídavkem ethanolu. V optických emisních spektrech byly identifikovány především radikály OH, které jsou prekurzory peroxidu vodíku. Výsledky ukázaly, že plazma v takovémto roztoku je stále tvořeno, což může být považováno za první krok generace plazmatu v organických sloučeninách. Poslední část práce byla zaměřena na tzv. mikroplazmatický jet v přímém kontaktu s kapalnou fází. Tato experimentální práce byla realizována na pracovišti Nanotechnology & Integrated Bio-Engineering Centre (NIBEC), University of Ulster, UK během studijní stáže. Jako vodivé médium byl použit roztok trihydrátu kyseliny chlorozlatité s různou počáteční vodivostí. Zajímavým zjištěním je fakt, že při tomto druhu měření bylo generováno stabilní plazma i při velmi malém výbojovém proudu (0.05 a 0.2 mA), a tedy i peroxid vodíku vznikal při velmi malé vstupní energii, což může být považováno za velmi dobrý výsledek.
Diaphragm discharge in organic dye solutions with focus on electrolytic decomposition
Davidová, Jaroslava ; Brablec, Antonín (referee) ; Kozáková, Zdenka (advisor)
This Diploma thesis is focused on physical and chemical effects which contribute to the decomposition of organic dyes by diaphragm discharge generated in water solutions. Due to the application of DC high voltage source in continuous regime, there is an effect of electrolysis contributing to the dye decomposition by diaphragm discharge. The aim of this work was to find out when the electrolysis is running (or when is the moment of discharge breakdown) and which factors influence the breakdown. The other goal was decomposition of selected textile and food organic dyes by electrolysis itself. In the theoretical part, theory about creation of electrical discharges in aqueous solutions is noted and various types of underwater discharges are described. Background researches about underwater electrical discharges used in the world are mentioned as well as the use of diaphragm discharges and various ways how to remove organic dyes from wastewater. Finally, theories of electrolysis, UV-VIS spectroscopy and basis of other analytical methods useful for detection of organic molecules are described. Experimental part is oriented to experiment procedure which was carried out in a reactor with separated electrode areas. Separation was made by dielectric diaphragm with a pinhole in the centre. Its initial diameter was 0.4 mm. Used chemicals and course of experiments are described in this part, too. First, the breakdown moment in the reactor was investigated (i. e. determination, when only electrolysis was operating) by formation of hydrogen peroxide and measurement of dynamic (time resolved) electrical characteristics. Next, decomposition of selected dyes by electrolysis was carried out. As the decomposition was related to decolorization of the solution, UV-VIS spectroscopy in the range of 350–700 nm was used for determination of dye concentration. Next part focused on results presents various factors which had an effect on breakdown of diaphragm discharge. These factors are kind of used electrolyte, initial conductivity of solution, kind of dye, temperature of solution and type of reactor (or solution volume). From the result, the most important factor is initial solution conductivity. After the determination of the breakdown moment, the electrolysis of organic dyes was performed. The applied current was 10 mA, initial conductivity was 500 µS/cm and used electrolyte was NaCl. Moreover comparison of dye decomposition in dependence on the different applied power was realized. From this comparison one can assume, there is no significant contribution of electrolysis (the efficiency is approximately 15 %) to the diaphragm discharge in aqueous solution.
Electric discharges in water and organic solutions
Klímová, Edita ; Brablec, Antonín (referee) ; Kozáková, Zdenka (advisor)
This work is focused on study of electrical discharges in liquids, especially in water solutions. Generation of the discharge in water solutions leads to simultaneous effect of UV radiation, shock waves, electrical field and most importantly, chemically reactive species. This can be utilized in many applications such as sterilization, degradation of organic waste products, lithotripsy or other medical applications. The experimental part is concentrated on a diaphragm arrangement of the reaction system. This means that the reactor is divided into two electrode reservoirs connected only through a small orifice in a dielectric barrier. This barrier is made of Macor® non-porous ceramics with thickness of 1 mm, with the diameter of the orifice 0.6 mm, in the first part of work. In the second part, ShapalTM-M ceramics of thickness 1.0 mm and orifice diameter 0.6 mm was used. The experimental part is divided into two sections. For both, NaCl is chosen as an electrolyte to set the initial conductivity of the tested solutions to the value of 400 S/cm. Supplied direct voltage is regulated to attain power of 100 W in the system. In the first part, effect of addition of chosen alcohols (ethanol, isopropylalcohol and glycerol) on the efficiency of the discharge in their water solutions is studied. For this purpose, a special glass reactor was designed and constructed. The efficiency of the discharge is measured by a spectroscopic determination of concentration of complex formed by a titanium reagent and hydrogen peroxide, which is generated during the discharge. The results show no positive effect of addition of extra OH group to the reaction through the alcohols. The use of isopropylalcohol causes even a significant decrease in the amount of hydrogen peroxide generated. The subject of the second part is a comparison of effect of different electrode materials on the discharge. The efficiency is measured by the same method as in the first part. Materials chosen were stainless steel, platinum, aluminium, copper and carbon. Each material shows different hydrogen peroxide production rate under the same parameters. The most perspective material seems to be carbon, as an inert material, that can be expected not to initiate any decomposition of hydrogen peroxide. The least favourable appears to be copper. When used, no production of hydrogen peroxide was observed in one of the electrode parts of the reactor.
Study of Post-Discharge Processes
Soural, Ivo ; Hrachová, Věra (referee) ; Brablec, Antonín (referee) ; Krčma, František (advisor)
The decaying plasma was studied by the optical emission spectroscopy. DC discharge created at 45 – 200 mA in Pyrex and Quartz tubes in flowing regime was used. The emission of three nitrogen spectral systems (1st and 2nd positive and 1st negative) were studied in time evolution for pressures of 500 – 5 000 Pa at two wall temperatures – ambient and liquid nitrogen (150 K inside the decaying plasma). Results showed that all three nitrogen systems (respectively N2(B, v), N2(C, v) and N2+(B, v) states as their origins) had their population maxima called pink-afterglow in the afterglow part. These maxima decreased with the increase of pressure for all systems, and moved to the later decay time. Maxima increased with discharge current (respectively power) and moved to shorter time. Populations at temperature of 150 K were measured due to the experimental arrangement from 17 ms, only, and thus pink aftergow maximum wasn’t observed (only at 5 000 Pa some maximum was recognized). Populations were smaller at 150 K that populations measured at laboratory temperature at the middle decay time (50-100 ms). At the late time, the populations were higher at lower temperature at lower pressure. Higher shifts (in intensity and decaytime) of pink afterglow maxima were observed in Quartz tube in comparison with their values in Pyrex tube. Besides the populations, rotational temperatures of selected bands of three observed spetral systems (for 1st negative 0-0 band, 1st positive 2-0 band and for 2nd positive 0-2 band) were measured. Rotational temperatures were monitored from presumption that this kind of temperature is equal to temperature of neutral gas (at local thermodynamic equilibrium). Results from 1st negative and 1st positive system showed strong decreasing of rotational temperatures up to about 10 ms at post-discharge begin, then temperatures were constant up to 20 ms of decay time and after that they grew up. Temperatures increased with the increase of current. The part with decreased temperature correlated with pink-afterglow part of post-discharge. Unfortunately, rotational temperatures of 2nd positive system had bad reproducibility and the time profile shape was opposite. Experimental results were compared with numerical kinetic model created by group of prof. Vasco Guerra at Instituto Supetior Técnico in Portugal. Several sets of conditions for simulation at 500 and 1 000 K in active discharge were applicable for the calculation corresponding to the experiment. Comparison of numerical simulation and experimental data done for N2(B) state demonstrated that maxima populations in pink afterglow are depended on the temperature difference between active discharge and post discharge. Maxima populations were supposed in pink afterglow disappeared if the same temperatures in active and post discharges were supposed. Temperature in active discharge is higher at higher apllied power, as it was showed from rotational temperatures observation. The results clearly showed that real temperature profile must be included into the kinetic model.
Diagnostics of Diaphragm Discharge in Water Solutions and its Application for the Nanomaterials Surface Treatment
Dřímalková, Lucie ; Brablec, Antonín (referee) ; Janda,, Mário (referee) ; Krčma, František (advisor)
The exact mechanism of the discharge in liquids ignition is not sufficiently known up to now. Although during the last years was achieved the great progress and overloading which some of them are written in this theoretical part of thesis. This thesis is divided into two experimental parts. When the first part deals with diagnostics of diaphragm discharge in electrolyte solutions and the second part is focused on its use for uncoiling (higher homogenization) of carbon nanotubes in solutions. In experiment 1, three different sized (4 l, 100 ml, 50 ml) diaphragm discharge configurations were used to diagnose diaphragm discharge in electrolyte solutions. Diagnostics is done through current and voltage waveforms with the addition of synchronized ICCD camera images that have been connected to a four-channel oscilloscope. The V-A characteristic can be described by three events occurring in the electrolyte solution with a gradual increase in voltage. Slowly increasing of the voltage in the solution leads first to electrolysis. The next phase is the formation of microbubbles or bubbles, which is characteristic of the curve by a slight decrease in the increase of the current passing between electrodes. The sudden increase in the current flow is characteristic of the last phase, namely the discharge phase. The distance of the electrodes from the diaphragm does not significantly affect the V-A characteristic. The higher diameter of the pin hole, therefore, has a higher voltage, but this does not affect the origin of bubble generation or breakdown. The higher thickness of diaphragm, the higher voltage is needed to the beginning of the bubbles generation, and consequently the discharge breakdown. Comparison of the voltage of the start generation of the bubbles and breakdown for PET diaphragms and diaphragms from the ceramic there was no mark able difference. One of the most important parameters is the conductivity of the electrolyte solution. The lower voltage is needed for the start generation of the bubbles at the higher solution conductivity, and also the discharge generation is observed at a lower breakdown voltage. The second experimental part is focused on the study of the diaphragm discharge effect on carbon nanotubes. A specially designed U-shaped reactor is used to modify carbon nanoparticles. Tap water and aqueous solutions of organic compounds are used as the electrolytic solutions. The discharge is generated by a non-pulsed DC high source with a voltage in the range of 0-2.8 kV supplied to platinum electrodes located in the electrolyte solution. The experimental results have shown that the diaphragm discharge has positive effects on the disintegration of clusters and agglomerates of carbon nanotubes. The primary effect on disintegration is probably the shock waves generated by the discharge. It turned out that it depends on the electrode configuration, where the treatment in anode space has far greater effects than the treatment in cathode half of the reactor. Effects of carbon nanotubes disintegration in solution are long-lasting and the treatment effect is not loosed after several months. There were detected no significant changes in the structure of plasma-treated nanotubes by Infra-red spectroscopy.
Study of nitrogen post-discharge by mercury vapor titration
Teslíková, Ivana ; Brablec, Antonín (referee) ; Mazánková, Věra (advisor)
The aim of this master thesis is a study of nitrogen post-discharge by mercury vapours titration. The nitrogen post-discharge is investigated for many years theoretically as well as for a practical use. The object of this master thesis is a study of kinetic processes ongoing at titrations of mercury vapours during the nitrogen post-discharge at different pressures and applied powers. All experimental data were obtained from an optical emission spectroscopy of nitrogen post-discharge. DC discharge in flowing regime was chosen for measurements. The first part of experiments was carried out at the constant discharge current (100 mA), voltage (1300 V) and wall temperature (300 K). The total gas pressure was varied in range of 500-3000 Pa at nitrogen flow in range of 0.12-0.68 l/min. Nitrogen flow values were arranged to obtain constant nitrogen flow velocity for all gas pressures. The second set of experiments studied power dependencies. The current was varied in the range of 50-200 mA for constant voltage 1300 V. The total gas pressure in this case was 1000 Pa. Mercury vapours were introduced into the system by titration tube at different post-discharge time. The nitrogen pink afterglow effect was well visible at all experimental conditions. This effect corresponds to the maximum intensity of light emission, which expresses as considerable growth of characteristic pink radiation in the post-discharge time. Optical emission spectra of post-discharge were taken in the range of 320-780 nm. Besides three nitrogen spectral systems (first and second positive and first negative), the mercury line at 254 nm was recorded in the second order spectrum at 508 nm under these conditions if mercury was added. This spectral line is excited under post-discharge conditions by collisionally induced resonance energy transfer from nitrogen highly vibrationally excited ground state metastables and it opens an unique technique for their monitoring. The dependence of relative intensities on decay time for mercury spectral line and selected nitrogen spectral systems at different titration positions were measured. The relative intensities of nitrogen bands decrease with increasing of mercury line relative intensity for all total gas pressures. The pink afterglow phenomenon shifts to the later decay times with the increasing of total gas pressure. In the case of experiments at different power, it can be seen that with decreasing power mercury spectral line intensity decreases in post-discharge time. The first detailed tests of the unique detection for highly excited of nitrogen metastables were completed. However this master thesis is concentrated on the basic research which supports better indication of kinetic processes and reactions leading to transformation of excitation energy, this new knowledge should be applied in future also in technologies based on the long-lived metastable induced reactions.
Deposition of plasma polymer films
Malá, Michaela ; Brablec, Antonín (referee) ; Čech, Vladimír (advisor)
This bachelor thesis is focused on the characterization and preparation of thin polymer layers deposited by plasma-enhanced chemical vapor deposition on silicon wafer. The main part of the work is a literature review about the plasma polymerization and methods of characterization of thin polymer layers. In the experimental section were prepared thin layers of polymer from the monomer vapor of tetravinylsilane. Prepared thin films were characterized by microscopic and spectroscopic techniques. The physical and chemical properties of deposited films were studied with respect to the deposition conditions in low-temperature plasma.
Diagnostics of Diaphragm Discharge in Water Solutions and its Application for the Nanomaterials Surface Treatment
Dřímalková, Lucie ; Brablec, Antonín (referee) ; Janda,, Mário (referee) ; Krčma, František (advisor)
The exact mechanism of the discharge in liquids ignition is not sufficiently known up to now. Although during the last years was achieved the great progress and overloading which some of them are written in this theoretical part of thesis. This thesis is divided into two experimental parts. When the first part deals with diagnostics of diaphragm discharge in electrolyte solutions and the second part is focused on its use for uncoiling (higher homogenization) of carbon nanotubes in solutions. In experiment 1, three different sized (4 l, 100 ml, 50 ml) diaphragm discharge configurations were used to diagnose diaphragm discharge in electrolyte solutions. Diagnostics is done through current and voltage waveforms with the addition of synchronized ICCD camera images that have been connected to a four-channel oscilloscope. The V-A characteristic can be described by three events occurring in the electrolyte solution with a gradual increase in voltage. Slowly increasing of the voltage in the solution leads first to electrolysis. The next phase is the formation of microbubbles or bubbles, which is characteristic of the curve by a slight decrease in the increase of the current passing between electrodes. The sudden increase in the current flow is characteristic of the last phase, namely the discharge phase. The distance of the electrodes from the diaphragm does not significantly affect the V-A characteristic. The higher diameter of the pin hole, therefore, has a higher voltage, but this does not affect the origin of bubble generation or breakdown. The higher thickness of diaphragm, the higher voltage is needed to the beginning of the bubbles generation, and consequently the discharge breakdown. Comparison of the voltage of the start generation of the bubbles and breakdown for PET diaphragms and diaphragms from the ceramic there was no mark able difference. One of the most important parameters is the conductivity of the electrolyte solution. The lower voltage is needed for the start generation of the bubbles at the higher solution conductivity, and also the discharge generation is observed at a lower breakdown voltage. The second experimental part is focused on the study of the diaphragm discharge effect on carbon nanotubes. A specially designed U-shaped reactor is used to modify carbon nanoparticles. Tap water and aqueous solutions of organic compounds are used as the electrolytic solutions. The discharge is generated by a non-pulsed DC high source with a voltage in the range of 0-2.8 kV supplied to platinum electrodes located in the electrolyte solution. The experimental results have shown that the diaphragm discharge has positive effects on the disintegration of clusters and agglomerates of carbon nanotubes. The primary effect on disintegration is probably the shock waves generated by the discharge. It turned out that it depends on the electrode configuration, where the treatment in anode space has far greater effects than the treatment in cathode half of the reactor. Effects of carbon nanotubes disintegration in solution are long-lasting and the treatment effect is not loosed after several months. There were detected no significant changes in the structure of plasma-treated nanotubes by Infra-red spectroscopy.

National Repository of Grey Literature : 17 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.