National Repository of Grey Literature 110 records found  beginprevious46 - 55nextend  jump to record: Search took 0.01 seconds. 
Glycobiology of the head and neck cancer
Szabo, Pavol ; Smetana, Karel (advisor) ; Říhová, Blanka (referee) ; Brábek, Jan (referee)
Povrch buněk je bohatě pokryt oligosacharidy, které jsou v plazmalemě ukotvené pomocí proteinů a lipidů. Oligosacharidy zprostředkují vzájemnou vazbu mezi buňkami nebo vazbu buněk k složkám extracelulární matrix. Galektiny jsou živočišné lektinů které mají afinitu k oligosacharidům obsahujícím β-galaktózu. Jsou to multifaktoriální proteiny, které se účastňují řady reakcí v organizmu, jako jsou mezibuněčné interakce, interakce buněk s mezibuněčnou hmotou, proliferace i apoptóza a sestřih pre-mRNA. Proteiny po translaci procházejí různými strukturálnimy úpravami, které mají vliv na jejich funkci. Galektin-3 je možný prognostický ukazatel u nádorů vycházejících z vrstevnatých dlaždicových epitelů je fosforylován na N-konci. Prokázali jsme, že tato posttranslační modifikace nemá vliv na jeho vazebnou reaktivitu. Jiný endogenní lektin, galektin-1 je charakteristickou molekulou nádorového stromatu a granulační tkáně hojícího se poranění. Zjistili jsme, že galektin-1 indukuje na TGF-β nezávislý in vitro přechod normálních fibroblastů na myofibroblasty včetně produkce sítě extracelulární matrix bohaté fibronektinem a galektinem-1. Tento poznatek je využitelný v terapii hojení ran a v tkáňovém inženýrství. Dnes je jasné, že nádorové stroma ovlivňuje i biologické vlastnosti nádoru (lokální agresivita,...
Genotoxic stress and senescence in tumour cells: impact on the tumour growth and anti-tumour immunity.
Sapega, Olena ; Reiniš, Milan (advisor) ; Brábek, Jan (referee) ; Šmahel, Michal (referee)
Premature cellular senescence is the process of permanent cell cycle arrest in response to various inducers, such as DNA damage, oxidative stress, chemotherapy agents, and irradiation. Senescent cells produce and secrete numbers of cytokines, chemokines, growth factors, which compose specific senescence-associated secretory phenotype (SASP). Senescence is considered to be an important barrier against tumor progression. On the other hand, senescent cells can also exert protumorigenic effects in their microenvironment. Based on this concept, the major aim of this thesis was to determine tumor cells senescence in terms of different inducers, namely chemotherapeutic agent docetaxel (DTX) and cytokines IFNγ and TNFα, and to demonstrate the role of immunotherapy in senescent cells elimination. Our results show that DTX-induced senescent cells can exert a tumor-promoting effect when co-injected with proliferating cells in mice. Importantly, we demonstrate that IL-12-based immunotherapy suppresses senescence-accelerated tumor growth. These results suggest that IL-12-based immunotherapy can be effectively used in anti-tumor therapy mainly in a case when the microenvironment is altered by the presence of tumor senescent cells. On the other hand, the data we obtained in vitro show that bystander or...
The analysis of plasticity of cancer cell invasiveness
Merta, Ladislav ; Brábek, Jan (advisor) ; Šindelka, Radek (referee) ; Staněk, David (referee)
The ability of cancer cells to adopt various invasive modes (the plasticity of cancer cell invasiveness) represents a significant obstacle in the treatment of cancer metastasis. Cancer invasiveness involves various modes of migration. Cells can move together (with the preserved intercellular junctions; collective invasiveness) or individually. Within individual invasiveness, we distinguish two principal invasive modes - mesenchymal and amoeboid. The mesenchymal mode of migration is characterized by an elongated shape, proteolytic degradation of the fibres of the extracellular matrix, and the formation of strong contacts with the extracellular matrix. The amoeboid mode of migration is not dependent on proteolytic activity, the cells are characterized by a round shape and increased contractility, which they use to squeeze themselves through the pores of the extracellular matrix. This thesis deals with the analysis of the plasticity of cancer cell invasiveness, specifically the transitions between individual amoeboid and mesenchymal migration modes, in the 3D environment of the collagen gel as a model of extracellular matrix. The work presents models of mesenchymal-to-amoeboid transition (MAT), which include BLM, HT1080 and MDA-MB-231 cell lines, in which MAT is induced by the expression of...
Molecular mechanisms of tamoxifen resistance in breast cancer
Tomková, Veronika ; Truksa, Jaroslav (advisor) ; Brábek, Jan (referee) ; Mráček, Tomáš (referee)
The resistance to tamoxifen, a drug used in the adjuvant therapy for hormone sensitive breast cancer, represents a major clinical obstacle. Although various mechanisms leading to tamoxifen resistance have been described and intensively studied, a significant number of patients still become resistant to the treatment and eventually relapse. Tamoxifen therapy has been shown to enrich tumors with cancer stem cells (CSCs), which are naturally resistant, and have self-renewal ability and the potential to form secondary tumors. Metabolic rewiring, altered iron metabolism and upregulation of ATP-binding cassette (ABC) transporters have been shown to be important in the maintenance of CSC phenotype. Therefore, we investigated these mechanisms as possible contributors to tamoxifen resistance in vitro in two tamoxifen resistant (Tam5R) cell lines that we established. We show that Tam5R cells have dramatically disassembled and less active mitochondrial supercomplexes (SCs) and higher level of mitochondrial superoxide, together with a fragmented mitochondrial network. Such dysfunction of mitochondria results in the AMP-activated protein kinase (AMPK) activation and metabolic rewiring towards glycolysis. Importantly, cells lacking functional mitochondria are significantly more resistant to tamoxifen, supporting...
The role of inflammatory signaling in cancer cell invasiveness
Šůchová, Anna-Marie ; Brábek, Jan (advisor) ; Brdička, Tomáš (referee)
Metastasizing is responsible for 90% of death in cancer patients. Metastatic tumour cells have several strategies that they use to invade surrounding tissues - they can migrate together or individually. When individual cells migrate, tumour cells adopt two different morphologies. They are either elongated and migrate using the proteolytically active mesenchymal mode, or they are rounded and migrate in the amoeboid mode. Metastatic tumour cells can switch between these modes, which complicates the development of effective migrastatics. In this work, we focused on the effect of inflammatory signalling on metastatic cell migration. We worked with cell lines of malignant human melanoma, which adopt a mixed morphology and show both amoeboid and mesenchymal phenotype during migration. Upon stimulation of melanoma human cells with interferon beta, a mesenchymal to amoeboid transition occurs. Interferon beta appears to induce amoeboid morphology by maintaining high levels of the ISGF3 complex, which is composed of the heterodimer of STAT 1 and STAT 2 proteins and the IRF9 protein. Upon blocking of Jak / Stat signalling pathway by negative regulators, human melanoma cells return to mesenchymal morphology. Key words - invasiveness, mesenchymal-ameboid transition, interferons, inflammation, migration, metastases
The role of p130Cas substrate domain mediated signaling in cancer cell migration, invasiveness and metastasis of cancer cells
Zemanová, Kateřina ; Brábek, Jan (advisor) ; Čáslavský, Josef (referee)
p130Cas (Crk-associated substrate) was first described over 30 years ago as a protein that associates with the v-src and v-crk oncoproteins and undergoes tyrosine phosphorylation. Proteins of the CAS family are an important part of cellular biological processes in normal and pathological situations. The existence of 15 YXXP repetitive motifs is characteristics for substrate domain. p130Cas is an adapter protein that allows interactions between proteins that lead to assembly of multiprotein complexes. The p130Cas protein regulates these multiprotein complexes, which further drive chemotaxis, apoptosis, differentiation and migration. Overproduction of CAS proteins was found in connection with a poor prognosis and an increased incidence of metastases. Also, the elevated expression of proteins of the CAS family is related to resistance to some types of chemotherapeutics.
Structural and regulatory aspects of Src kinase activation
Koudelková, Lenka ; Brábek, Jan (advisor) ; Brdička, Tomáš (referee) ; Hejnar, Jiří (referee)
Src kinase plays a crucial role in a multitude of fundamental cellular processes. Src is an essential component of signalling pathways controlling cellular proliferation, motility or differentiation, and is often found deregulated in tumours. Src activity is therefore maintained under stringent and complex regulation mediated by SH3 and SH2 domains and the phosphorylation state of tyrosines 416 and 527. Active Src adopts an open conformation whereas inactive state of the kinase is characterised by a compact structure stabilised by inhibitory intramolecular interactions. We identified phosphorylation of tyrosine 90 within binding surface of SH3 domain as a new regulatory switch controlling Src kinase activation. Using substitutions mimicking phosphorylation state of the residue we demonstrated that tyrosine 90 phosphorylation controls Src catalytic activity, conformation and interactions mediated by the SH3 domain, representing a positive regulatory mechanism leading to elevated activation of mitogenic pathways and increased invasive potential of cells. Based on correlation between compactness of Src structure and its catalytic activity, we constructed a FRET-based sensor of Src conformation enabling to measure the dynamics of Src activation in cells with spatio-temporal resolution. We found that...
The role of nitric oxide during embryonic wound healing and regeneration
Abaffy, Pavel ; Šindelka, Radek (advisor) ; Brábek, Jan (referee) ; Krylov, Vladimír (referee)
The study of the mechanisms that control wound healing is an attention-drawing area within the fields of biology and medicine. Wound healing can be usually defined as two basic types. The first type is adult wound healing, which is slow and results in the scar formation. The second type is referred to as embryonic wound healing, which is in contrast fast and scarless. Wound healing is a complicated process that includes many steps, which are regulated by various types of molecules. One of these important molecules is nitric oxide (NO). Its function is usually connected with the regulation of inflammation and angiogenesis during adult wound healing. However, there is currently no information on its role during embryonic wound healing, where the immune and vascular systems are not yet developed. In this work, we explore and describe the role of the NO during the healing of the early embryos. The highest concentration of the NO post wounding is produced during the first 30 minutes after injury. This applies to all developmental stages, from the blastula stage all the way to the swimming tadpole stage. The main role of the NO during embryonic wound healing is the regulation of the gene expression that is connected with the stress response and the regulation of cellular metabolism. Additionally, we...
Evolutionarily conserved mechanisms of gene expression regulation by nuclear receptors.
Chughtai, Ahmed Ali ; Kostrouch, Zdeněk (advisor) ; Malínský, Jan (referee) ; Brábek, Jan (referee)
Transcriptional regulation of gene expression in eukaryotes has evolved over millions of years. The regulatory pathways of nuclear receptors represent an evolutionarily ancient, but conserved mechanism with associated accessory proteins, many of them forming a functional nexus known as the Mediator complex involved in transcription. Despite the versatility of the pathway, e.g. through the adoption of new regulatory functions in phylogenetically more recent Metazoa, we hypothesise that the intrinsic potential of the NR-Mediator axis to directly translate a stimulus to a biological response is conserved across species, and additional regulation could also be achieved through secondary functions of its essential members. To support the hypothesis, we assessed the ligand-binding capability of retinoic X receptor in Trichoplax adhaerens and provided evidence to support the concept that this capability was already present at the base of metazoan evolution. With regards to the potential secondary functions, we took inspiration from previous research and identified the Mediator subunit 28 (MED28) as the only known member having documented nuclear and cytoplasmic dual roles, and thus possessing the potential to transmit signals from the cellular structural states to the nucleus. Due to the lack of...
Proximity proteome of intramembrane serine protease RHBDL4
Boháčová, Šárka ; Stříšovský, Kvido (advisor) ; Brábek, Jan (referee)
Regulated intramembrane proteolysis is an interesting process involved in a multitude of cellular pathways. Enzymes which catalyse this are termed intramembrane proteases (IMPRs), cleaving proteins passing through the membrane within their transmembrane domain. Rhomboid proteases are serine IMPRs. They are widely distributed among organisms and evolutionarily conserved, but despite many efforts, their physiological roles are largely unexplored. RHBDL4 is a mammalian rhomboid protease localised to the endoplasmic reticulum. It is involved in the development of colorectal cancer, which makes it an important focus of research, but its physiological function is not well understood. In order to explore it, I established and employed a proximity proteomics approach, termed APEX2. It is based on biotinylation of proteins in the spatial proximity of the target in the physiological environment of intact living cells. Labelled proteins are subsequently purified, identified and quantified by mass spectrometry. Exploring the physiological vicinity of RHBDL4, its interaction partners and substrates can be revealed and the detailed subcellular compartment, where RHBDL4 resides, can thus be inferred. During three independent experiments in HCT116 cell line, three proteins emerged repeatedly in the RHBDL4...

National Repository of Grey Literature : 110 records found   beginprevious46 - 55nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.