Národní úložiště šedé literatury Nalezeno 34,731 záznamů.  začátekpředchozí31 - 40dalšíkonec  přejít na záznam: Hledání trvalo 1.11 vteřin. 

Soubor publikovaných článků
DVOŘÁK, Petr
Cílem předkládaného souboru publikovaných článků je charakterizovat sociální dovednosti učitele jako součást jeho profesní kompetence a vymezit jejich význam ve výuce angličtiny komunikační metodou v edukačních interakcích ve školní třídě. Teoretickými východisky výzkumů jejichž výsledky jednotlivé články předkládají jsou funkčně komunikační přístupu k jazyku a z něj vycházející komunikační metoda. Pozornost je věnována procesům interakce, komunikace a cizojazyčnému diskurzu ve školním prostředí s akcentem na cizojazyčnou výuku dospívajících. Na základě specifik cizojazyčné edukační interakce konkretizujeme sociální dovednosti učitele a vymezujeme sociálně-dovednostní aspekty cizojazyčné edukační interakce. Zjištění výzkumů prezentovaných v předkládaných článcích se týkají zejména žákovské reflexe edukačního stylu učitelů angličtiny a edukačního působení učitele v konkrétní třídní interakci. Výzkum je rovněž zacílen na analýzu vybraných sociálně-dovednostních aspektů edukační interakce a diskurzu ve výuce angličtiny komunikační metodou. Konkrétně se jedná o žákovské a učitelské iniciace komunikace, otázky a distribuci komunikačních příležitostí.

Automata in Infinite-state Formal Verification
Lengál, Ondřej ; Jančar, Petr (oponent) ; Veith, Helmut (oponent) ; Esparza, Javier (oponent) ; Vojnar, Tomáš (vedoucí práce)
The work presented in this thesis focuses on finite state automata over finite words and finite trees, and the use of such automata in formal verification of infinite-state systems. First, we focus on extensions of a previously introduced framework for verifi cation of heap-manipulating programs-in particular programs with complex dynamic data structures-based on tree automata. We propose several extensions to the framework, such as making it fully automated or extending it to consider ordering over data values. Further, we also propose novel decision procedures for two logics that are often used in formal verification: separation logic and weak monadic second order logic of one successor. These decision procedures are based on a translation of the problem into the domain of automata and subsequent manipulation in the target domain. Finally, we have also developed new approaches for efficient manipulation with tree automata, mainly for testing language inclusion and for handling automata with large alphabets, and implemented them in a library for general use. The developed algorithms are used as the key technology to make the above mentioned techniques feasible in practice.

New Methods for Increasing Efficiency and Speed of Functional Verification
Zachariášová, Marcela ; Dohnal, Jan (oponent) ; Steininger, Andreas (oponent) ; Kotásek, Zdeněk (vedoucí práce)
In the development of current hardware systems, e.g. embedded systems or computer hardware, new ways how to increase their reliability are highly investigated. One way how to tackle the issue of reliability is to increase the efficiency and the speed of verification processes that are performed in the early phases of the design cycle. In this Ph.D. thesis, the attention is focused on the verification approach called functional verification. Several challenges and problems connected with the efficiency and the speed of functional verification are identified and reflected in the goals of the Ph.D. thesis. The first goal focuses on the reduction of the simulation runtime when verifying complex hardware systems. The reason is that the simulation of inherently parallel hardware systems is very slow in comparison to the speed of real hardware. The optimization technique is proposed that moves the verified system into the FPGA acceleration board while the rest of the verification environment runs in simulation. By this single move, the simulation overhead can be significantly reduced. The second goal deals with manually written verification environments which represent a huge bottleneck in the verification productivity. However, it is not reasonable, because almost all verification environments have the same structure as they utilize libraries of basic components from the standard verification methodologies. They are only adjusted to the system that is verified. Therefore, the second optimization technique takes the high-level specification of the system and then automatically generates a comprehensive verification environment for this system. The third goal elaborates how the completeness of the verification process can be achieved using the intelligent automation. The completeness is measured by different coverage metrics and the verification is usually ended when a satisfying level of coverage is achieved. Therefore, the third optimization technique drives generation of input stimuli in order to activate multiple coverage points in the veri\-fied system and to enhance the overall coverage rate. As the main optimization tool the genetic algorithm is used, which is adopted for the functional verification purposes and its parameters are well-tuned for this domain. It is running in the background of the verification process, it analyses the coverage and it dynamically changes constraints of the stimuli generator. Constraints are represented by the probabilities using which particular values from the input domain are selected.       The fourth goal discusses the re-usability of verification stimuli for regression testing and how these stimuli can be further optimized in order to speed-up the testing. It is quite common in verification that until a satisfying level of coverage is achieved, many redundant stimuli are evaluated as they are produced by pseudo-random generators. However, when creating optimal regression suites, redundancy is not needed anymore and can be removed. At the same time, it is important to retain the same level of coverage in order to check all the key properties of the system. The fourth optimization technique is also based on the genetic algorithm, but it is not integrated into the verification process but works offline after the verification is ended. It removes the redundancy from the original suite of stimuli very fast and effectively so the resulting verification runtime of the regression suite is significantly improved.

Retargetable Analysis of Machine Code
Křoustek, Jakub ; Janoušek, Jan (oponent) ; Návrat,, Pavol (oponent) ; Kolář, Dušan (vedoucí práce)
Program analysis is a computer-science methodology whose task is to analyse the behavior of a given program. The methods of program analysis can also be used in other methodologies such as reverse engineering, re-engineering, code migration, etc. In this thesis, we focus on program analysis of a machine-code and we address the limitations of a nowadays approaches by proposing novel methods of a fast and accurate retargetable analysis (i.e. they are designed to be independent of a particular target platform). We focus on two types of analysis - dynamic analysis (i.e. run-time analysis) and static analysis (i.e. analysing application without its execution). The contribution of this thesis within the dynamic analysis lays in the extension and enhancement of existing methods and their implementation as a retargetable debugger and two types of a retargetable translated simulator. Within the static analysis, we present a concept and implementation of a retargetable decompiler that performs a program transformation from a machine code into a human-readable form of representation. All of these tools are based on several novel methods defined by the author. According to our experimental results and users feed-back, all of the proposed tools are at least fully competitive to existing solutions, while outperforming these solutions in several ways.

Harnessing Forest Automata for Verification of Heap Manipulating Programs
Šimáček, Jiří ; Abdulla, Parosh (oponent) ; Křetínský, Mojmír (oponent) ; Vojnar, Tomáš (vedoucí práce)
This work addresses verification of infinite-state systems, more specifically, verification of programs manipulating complex dynamic linked data structures. Many different approaches emerged to date, but none of them provides a~sufficiently robust solution which would succeed in all possible scenarios appearing in practice. Therefore, in this work, we propose a new approach which aims at improving the current state of the art in several dimensions. Our approach is based on using tree automata, but it is also partially inspired by some ideas taken from the methods based on separation logic. Apart from that, we also present multiple advancements within the implementation of various tree automata operations, crucial for our verification method to succeed in practice. Namely, we provide an optimised algorithm for computing simulations over labelled transition systems which then translates into more efficient computation of simulations over tree automata. We also give a new algorithm for checking inclusion over tree automata, and we provide experimental evaluation demonstrating

Network-wide Security Analysis
de Silva, Hidda Marakkala Gayan Ruchika ; Šafařík,, Jiří (oponent) ; Šlapal, Josef (oponent) ; Švéda, Miroslav (vedoucí práce)
The objective of the research is to model and analyze the effects of dynamic routing protocols. The thesis addresses the analysis of service reachability, configurations, routing and security filters on dynamic networks in the event of device or link failures. The research contains two main sections, namely, modeling and analysis. First section consists of modeling of network topology, protocol behaviors, device configurations and filters. In the modeling, graph algorithms, routing redistribution theory, relational algebra and temporal logics were used. For the analysis of reachability, a modified topology table was introduced. This is a unique centralized table for a given network and invariant for network states. For the analysis of configurations, a constraint-based analysis was developed by using XSD Prolog. Routing and redistribution were analyzed by using routing information bases and for analyzing the filtering rules, a SAT-based decision procedure was incorporated. A part of the analysis was integrated to a simulation tool at OMNeT++ environment. There are several innovations introduced in this thesis. Filtering network graph, modified topology table, general state to reduce the state space, modeling devices as filtering nodes and constraint-based analysis are the key innovations. Abstract network graph, forwarding device model and redistribution with routing information are extensions of the existing research. Finally, it can be concluded that this thesis discusses novel approaches, modeling methods and analysis techniques in the area of dynamic networks. Integration of these methods into a simulation tool will be a very demanding product for the network designers and the administrators.

Analysis and Testing of Concurrent Programs
Letko, Zdeněk ; Lourenco, Joao (oponent) ; Sekanina, Lukáš (oponent) ; Vojnar, Tomáš (vedoucí práce)
The thesis starts by providing a taxonomy of concurrency-related errors and an overview of their dynamic detection. Then, concurrency coverage metrics which measure how well the synchronisation and concurrency-related behaviour of tested programs has been examined are proposed together with a~methodology for deriving such metrics. The proposed metrics are especially suitable for saturation-based and search-based testing. Next, a novel coverage-based noise injection techniques that maximise the number of interleavings witnessed during testing are proposed. A comparison of various existing noise injection heuristics and the newly proposed heuristics on a set of benchmarks is provided, showing that the proposed techniques win over the existing ones in some cases. Finally, a novel use of stochastic optimisation algorithms in the area of concurrency testing is proposed in the form of their application for finding suitable combinations of values of the many parameters of tests and the noise injection techniques. The approach has been implemented in a prototype way and tested on a set of benchmark programs, showing its potential to significantly improve the testing process.

Relational Verification of Programs with Integer Data
Konečný, Filip ; Bouajjani, Ahmed (oponent) ; Jančar, Petr (oponent) ; Vojnar, Tomáš (vedoucí práce)
This work presents novel methods for verification of reachability and termination properties of programs that manipulate unbounded integer data. Most of these methods are based on acceleration techniques which compute transitive closures of program loops. We first present an algorithm that accelerates several classes of integer relations and show that the new method performs up to four orders of magnitude better than the previous ones. On the theoretical side, our framework provides a common solution to the acceleration problem by proving that the considered classes of relations are periodic. Subsequently, we introduce a semi-algorithmic reachability analysis technique that tracks relations between variables of integer programs and applies the proposed acceleration algorithm to compute summaries of procedures in a modular way. Next, we present an alternative approach to reachability analysis that integrates predicate abstraction with our acceleration techniques to increase the likelihood of convergence of the algorithm. We evaluate these algorithms and show that they can handle a number of complex integer programs where previous approaches failed. Finally, we study the termination problem for several classes of program loops and show that it is decidable. Moreover, for some of these classes, we design a polynomial time algorithm that computes the exact set of program configurations from which nonterminating runs exist. We further integrate this algorithm into a semi-algorithmic method that analyzes termination of integer programs, and show that the resulting technique can verify termination properties of several non-trivial integer programs.

Acceleration Methods for Evolutionary Design of Digital Circuits
Vašíček, Zdeněk ; Miller, Julian (oponent) ; Zelinka,, Ivan (oponent) ; Sekanina, Lukáš (vedoucí práce)
Although many examples showing the merits of evolutionary design over conventional design techniques utilized in the field of digital circuits design have been published, the evolutionary approaches are usually hardly applicable in practice due to the various so-called scalability problems. The scalability problem represents a general problem that refers to a situation in which the evolutionary algorithm is able to provide a solution to a small problem instances only. For example, the scalability of evaluation of a candidate digital circuit represents a serious issue because the time needed to evaluate a candidate solution grows exponentially with the increasing number of primary inputs. In this thesis, the scalability problem of evaluation of a candidate digital circuit is addressed. Three different approaches to overcoming this problem are proposed. Our goal is to demonstrate that the evolutionary design approach can produce interesting and human competitive solutions when the problem of scalability is reduced and thus a sufficient number of generations can be utilized. In order to increase the performance of the evolutionary design of image filters, a domain specific FPGA-based accelerator has been designed. The evolutionary design of image filters is a kind of regression problem which requires to evaluate a large number of training vectors as well as generations in order to find a satisfactory solution. By means of the proposed FPGA accelerator, very efficient nonlinear image filters have been discovered. One of the discovered implementations of an impulse noise filter consisting of four evolutionary designed filters is protected by the Czech utility model. A different approach has been introduced in the area of logic synthesis. A method combining formal verification techniques with evolutionary design that allows a significant acceleration of the fitness evaluation procedure was proposed. The proposed system can produce complex and simultaneously innovative designs, overcoming thus the major bottleneck of the evolutionary synthesis at gate level. The proposed method has been evaluated using a set of benchmark circuits and compared with conventional academia as well as commercial synthesis tools. In comparison with the conventional synthesis tools, the average improvement in terms of the number of gates provided by our system is approximately 25%. Finally, the problem of the multiple constant multiplier design, which belongs to the class of problems where a candidate solution can be perfectly evaluated in a short time, has been investigated. We have demonstrated that there exists a class of circuits that can be evaluated efficiently if a domain knowledge is utilized (in this case the linearity of components).

Evolutionary Approach to Synthesis and Optimization of Ordinary and Polymorphic Circuits
Gajda, Zbyšek ; Schmidt, Jan (oponent) ; Zelinka,, Ivan (oponent) ; Sekanina, Lukáš (vedoucí práce)
This thesis deals with the evolutionary design and optimization of ordinary and polymorphic circuits. New extensions of Cartesian Genetic Programming (CGP) that allow reducing of the computational time and obtaining more compact circuits are proposed and evaluated. Second part of the thesis is focused on new methods for synthesis of polymorphic circuits. Proposed methods, based on polymorphic binary decision diagrams and polymorphic multiplexing, extend the ordinary circuit representations with the aim of including polymorphic gates. In order to reduce the number of gates in circuits synthesized using proposed methods, an evolutionary optimization based on CGP is implemented and evaluated. The implementations of polymorphic circuits optimized by CGP represent the best known solutions if the number of gates is considered as the target criterion.