National Repository of Grey Literature 10 records found  Search took 0.00 seconds. 
Estimation of mechanical parameters of thin films using finite element analysis
Tinoco Navaro, Hector Andres ; Holzer, Jakub ; Pikálek, Tomáš ; Buchta, Zdeněk ; Lazar, Josef ; Chlupová, Alice ; Kruml, Tomáš ; Hutař, Pavel
This study shows a methodology to estimate mechanical parameters of thin films by means of a bulge\ntest and a numerical approach. The methodology is based on the combination of finite element analysis with a\nclassical analytical method. Finite element modelling was conducted for monolayer (Si3N4) membranes of 2x2mm\nwith the aim to approximate both the load-deflection curves experimentally measured and the classical loaddeflection\nanalytical model. Error functions were constructed and minimized to delimit a coupled solution space\nbetween Young’s modulus and Poison’s ratio. In a traditional bulge test analysis only one of the elastic properties\ncan be determined due to that there is not unique solution in the estimations of these parameters. However, both\nelastic parameters were determined through the proposed numerical procedure which compares the deformed\nsurfaces for a specific set of optimal elastic parameters computed. Results shows that the estimated elastic\nproperties agree with corresponding values determined by other methods in the literature
Development of the bulge test equipment for measuring mechanical properties of thin films
Holzer, Jakub ; Pikálek, Tomáš ; Buchta, Zdeněk ; Lazar, Josef ; Tinoco, H.A. ; Chlupová, Alice ; Kruml, Tomáš
The bulge test apparatus designed for the measurement of mechanical material properties of thin films was constructed and tested. The principle of the test is to apply pressure on a free-standing membrane, to measure the membrane shape and to analyse the results. Commercially available silicon nitride (Si3N4) thin films were used for the testing. It is shown that interferometric set-up designed and assembled for the apparatus enables precise determination of 3D shape of the whole membrane, which allows more precise determination of materials parameters compared to measurement of the height of the center of the membrane only. Fit of an analytical formula gives values of Young modulus and residual stress with very good agreement with the literature data. Moreover, FEM model of the bulged membrane was developed. The main aim of the effort is to enable measurement of plastic properties of a thin film of interest, that will be deposited on the Si3N4 membrane with known properties and bulge test will be performed on the bilayer specimen. Subsequently, the material properties of the thin film will be obtained using FEM analysis.
Detecting plasticity in al thin films by means of bulge test
Holzer, Jakub ; Pikálek, Tomáš ; Buchta, Zdeněk ; Lazar, Josef ; Tinoco, H.A. ; Chlupová, Alice ; Náhlík, Luboš ; Sobota, Jaroslav ; Fořt, Tomáš ; Kruml, Tomáš
The Bulge test proved to be a useful tool for measuring elastic properties of thin films and\nfree standing membranes, particularly Young’s modulus and residual stress. The basic principle\nof bulge test is application of differential pressure on one side of the a membrane, measurement of\nthe shape of bulged surface as a function of pressure, in this case via laser interferometer, and\nevaluation of a pressure-deflection relationship. In this study, bilayer membrane consisting of a\nsilicon nitride supporting layer and an aluminium layer deposited by means of magnetron\nsputtering is subjected to the bulge test. The results clearly show signs of a non-linear behavior\nthat is caused by plastic deformation in the aluminium layer. Finite element analysis is being\ndeveloped to describe this behavior because analytical model using deflection of central point and\npressure relation falls apart in case of non-linearity.
Phase and group refractive indices of air calculation by fitting\nof phase difference measured using a combination of laser and\nlow-coherence interferometry
Pikálek, Tomáš ; Šarbort, Martin ; Číp, Ondřej ; Pham, Minh Tuan ; Lešundák, Adam ; Pravdová, Lenka ; Buchta, Zdeněk
The air refractive index is an important parameter in interferometric length measurements, since it substantially\naffects the measurement accuracy. We present a refractive index of air measurement method based on monitoring\nthe phase difference between the ambient air and vacuum inside a permanently evacuated double-spaced cell. The cell is placed in one arm of the Michelson interferometer equipped with two light sources—red LED and HeNe laser, while the low-coherence and laser interference signals are measured separately. Both phase and group refractive indices of air can be calculated from the measured signals. The method was experimentally verified by\ncomparing the obtained refractive index values with two different techniques.
Interferometrical system for bulge test thin film characterization
Pikálek, Tomáš ; Holzer, Jakub ; Tinoco, H.A. ; Buchta, Zdeněk ; Lazar, Josef ; Chlupová, Alice ; Náhlík, Luboš ; Sobota, Jaroslav ; Fořt, Tomáš ; Kruml, Tomáš
Behavior of thin film materials undergoing stress and deformation differs from bulk materials. A common method for the mechanical characterization of thin films is nanoindentation based on indenting a small tip into the material. A different approach is a bulge test technique. In this method, a differential pressure is applied on a free-standing membrane and the mechanical properties (Young’s modulus and residual stress) are calculated from the shape of the bulged membrane. In our experiments, we developed an interferometrical system for the membrane shape measurement during the bulge test.
Air refractive index measurement using low-coherence interferometry
Pikálek, Tomáš ; Buchta, Zdeněk
Paper deals with a new direct air refractive index measurement method. In this method, the air refractivity is calculated from the optical path difference between two parts of a permanently evacuated double-spaced vacuum cell that is measured by means of a combination of laser and low-coherence interferometry.
Automatic system for gauge blocks calibration optimized for legal length metrology
Buchta, Zdeněk ; Šarbort, Martin ; Čížek, Martin ; Hucl, Václav ; Řeřucha, Šimon ; Pikálek, Tomáš ; Dvořáčková, Š. ; Dvořáček, F. ; Kůr, J. ; Konečný, P. ; Lazar, Josef ; Číp, Ondřej
This paper presents a contactless system for automatic and contactless gauge blocks calibration based on combination of laser interferometry and low-coherence interferometry. In the presented system, the contactless measurement of the absolute gauge block length is done as a single-step operation without any change in optical setup during the measurement. The optical setup is combined with compact gauge block changer with capacity 126 gauge blocks, which makes the resulting system fully automatic. \nThe paper also presents in detail a set of optimization steps which have been done in order to transform the original experimental setup into the automatic system which meets legal length metrology requirements. To prove the measurement traceability, we conducted a set of gauge block length measurement comparing data from the optimized system and the established reference system and TESA–UPC operated in Czech Metrology Institute laboratory.
Analysis and verification of air refractive index measurement method for laser interferometry
Pikálek, Tomáš ; Novák,, Jiří (referee) ; Buchta, Zdeněk (advisor)
This thesis deals with a theoretical analysis and experimental verification of a new method for the refractive index of air measurement. This method uses a combination of laser and low-coherence interferometry. The experimental setup is based on the Michelson interferometer equipped with a double-spaced glass cell. The optical path difference between the inner and outer part of the cell that is proportional to air refractivity is estimated using two low-coherence interference signals. These signals are analysed in the frequency domain which results in the dependence of the phase change caused the by air on vacuum wavelength. This dependency is fitted by a theoretical function based on Edlén's equations in order to calculate the phase difference for laser wavelength. This value is then made more accurate utilising two laser interference signals and used for the air refractive index calculation. The new method was experimentally verified and compared to two different techniques. Moreover, the measurement uncertainty was evaluated.
Surface analysis using low-coherence interferometry
Pikálek, Tomáš ; Novák, Jiří (referee) ; Buchta, Zdeněk (advisor)
This thesis deals with low-coherence interferometry, laser interferometry and its combination intended to be used for contactless surface analysis. It outlines theoretical background of laser interferometry and low-coherence interferometry and describes in detail interference fringe center detection techniques used in low-coherence interferometry and their implementation into MATLAB environment. All these techniques theoretically described were analyzed to evaluate their measurement accuracy, resistance to optical dispersion and computational complexity in order to choose the most appropriate technique to be involved into the experiment. Furthermore, the thesis describes design of an experimental setup for optical surface analysis combining laser interferometry and low-coherence interferometry. There are presented experimental results and its comparison with the reference measurement. Overall measurement uncertainty is calculated and discussed too.
White-light interference fringe center detection in white-light interferometry
Pikálek, Tomáš ; Fořt, Tomáš ; Buchta, Zdeněk
This paper deals with interference fringe center detection techniques used in low-coherence interferometry for contactless surface analysis. It presents a complex analysis of the experimental data processed by using of various different techniques. The analysis compares those techniques in terms of computational complexity, measurement accuracy and resistance to optical dispersion caused by wedge-shaped optical components.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.