Národní úložiště šedé literatury Nalezeno 9 záznamů.  Hledání trvalo 0.00 vteřin. 
Advancements of Holographic endoscopy for in-vivo observations
Michálková, Ivana ; Tyc, Tomáš (oponent) ; Čižmár, Tomáš (vedoucí práce)
In recent years, a novel technique called holographic endoscopy has been developed and systematically improved. This unique technology utilizes a single hair-thin optical multimode fiber as a minimally invasive probe for deep tissue in vivo microscopy. A major milestone was reached last year when near-perfect focusing through a multimode fiber was achieved with the holographic endoscope. This breakthrough is significant for adapting scanning fluorescent microscopy techniques because it allows for more precise imaging with lower unwanted noise, thanks to the purity and fidelity of the focused excitation light. The achievement led to a new question: is it possible to generate more complex optical fields than diffraction-limited foci through the multimode fiber with comparable quality? This thesis aims to investigate this issue by producing Airy beams at the tip of the multimode fiber using the holographic endoscope setup. Two methods were used to produce Airy beams in this study: Fourier domain and direct field synthesis. The quality of the resulting beams was evaluated by comparing them to simulations. The propagation of the generated beams was also recorded and observed, and the potential of Fourier domain synthesis to control and modify the propagation characteristics of an Airy beam was explored. The analysis revealed that using the holographic endoscope setup, it is possible to create more complex optical fields, such as Airy beams, at the tip of a multimode fiber with an accuracy that matches the high-quality diffraction-limited foci produced in 2022. It is hoped that this work will serve as another stepping stone for the holographic endoscope's ability to work in microscopy regimes that utilize more complex light fields, such as structured illumination microscopy or stimulated emission depletion microscopy.
Dynamics of Microparticles Optically Trapped in Vacuum
Svak, Vojtěch ; Čižmár, Tomáš (oponent) ; Marago, Onofrio (oponent) ; Brzobohatý, Oto (vedoucí práce)
A microparticle levitating in vacuum only by optical forces constitutes a mechanical system which is extremely well isolated from its environment, including its sources of noise. This unique feature provides the system with outstanding sensitivity on any change of surrounding conditions. We introduce a unique experimental set-up for trapping in vacuum which we built the Institute of scientific instruments of CAS in Brno. Subsequently we provide an experimental study of mechanical effect of circularly polarized light which, contrary to linearly polarized light, generates non-conservative contribution to the optical force field. We follow by presenting observation of optical binding of two particles in free space in vacuum which has never been realised before and show how the inter-particle interaction can be tuned and characterized. In the end we introduce a promissing method for optical force field estimation based on particles stochastic trajectory analysis.
Endoskopie s multimódovým optickým vláknem
Jákl, Petr ; Tučková, Tereza ; Pikálek, Tomáš ; Stibůrek, Miroslav ; Ondráčková, Petra ; Cifuentes, Angel S. ; Šiler, Martin ; Uhlířová, Hana ; Traegaardh, Johanna ; Čižmár, Tomáš
Optická mikroskopie je technikou pro zkoumání mikrosvěta pomocí světelných vln rozptýlených na částicích v prostoru vzorku. V oblasti lékařství, mikrobiologie a neurologie je jejím hlavním nedostatkem malá penetrační hloubka, kdy je velmi obtížné zobrazit struktury zanořené více než přibližně 1 mm do tkáně. Tradiční endoskopy s čočkou či tyčinkou s gradientním profilem indexu lomu (GRIN lens) zasáhnou tkáň v oblasti o průměru jednotek milimetrů, což je problematické u studia nervových tkání in vivo. Alternativou je využít k přenosu obrazu multimódových optických vláken (MMF), jejichž průměr je v nízkých stovkách mikrometrů. Tento přístup ovšem vyžaduje pokročilé tvarování vlnoplochy světla.
Behaviour of Objects in Structured Light Fields and Low Pressures
Flajšmanová, Jana ; Čižmár, Tomáš (oponent) ; Marago, Onofrio (oponent) ; Zemánek, Pavel (vedoucí práce)
A deeper understanding of behaviour of optically trapped particles reveals underlying physical phenomena arising from the light-matter interaction. We present an explanation of the enhancement of the pulling force acting on optically bound particles in the structured optical field, so--called tractor beam. It is demonstrated that the motion of two optically bound objects in a tractor beam strongly depends on their mutual distance and spatial orientation, which adds an extra flexibility to our ability to control matter with light.\newline Subsequently, the thesis is focused on the optical levitation of a particle in a vacuum. We propose a novel methodology for a characterization of properties of a weakly nonlinear Duffing oscillator represented by an optically levitated nanoparticle. The method is based on averaging recorded trajectories with defined initial positions in the phase space of nanoparticle position and momentum and provides us with the oscillator parameters directly from the recorded motion. Our innovative approach is compared with the commonly used power--spectral--density fitting, and exploiting numerical simulations, we show its applicability even at lower pressures where the nonlinearity starts to play a~significant role.
Locking in on large volume light-sheet microscopy
Vettenburg, T. ; Dalgarno, H.I.C. ; Nylk, J. ; Coll-Lladó, C. ; Ferrier, D.E.K. ; Čižmár, Tomáš ; Gunn-Moore, F.J. ; Dholakia, K. ; Corral, A. ; Rodriguez-Pulido, A. ; Flors, C. ; Ripoll, J.
Fluorescence light-sheet microscopy is increasingly adopted by developmental biologists to study how cells divide and differentiate to form organs and even entire organisms. The lightsheet microscope differs from a conventional microscope in that the specimen is illuminated by a plane of light orthogonal to the detection axis, thus keeping the out-of-focus areas dark while minimizing any potentially detrimental exposure of the sample. The light-sheet microscope has been found to be the ideal instrument for long-term and non-invasive studies of intact, and therefore three-dimensional, fluorescent samples.
Imaging via multimode optical fiber: recovery of a transmission matrix using internal references
Šiler, Martin ; Jákl, Petr ; Traegaardh, Johanna ; Ježek, Jan ; Uhlířová, Hana ; Tučková, Tereza ; Zemánek, Pavel ; Čižmár, Tomáš
Current research of life shows a great desire to study the mechanics of biological processes\ndirectly within the complexity of living organisms. However, majority of practical techniques\nused nowadays for tissue visualization can only reach depths of a few tens of micrometres as\nthe issue obscures deep imaging due to the random light scattering. Several imaging\ntechniques deal with this problems from different angels, such as optical coherence\ntomography, light sheet microscopy or structured light illumination A different and promising strategy to overcome the turbid nature of scattering tissues is to employ multimode optical fibers (MMF) as minimally invasive light guides or endoscopes to provide optical access inside. Although the theoretical description of light propagation through such fibers has been developed a long time ago it is frequently considered inadequate to describe real MMF. The inherent randomization of light propagating through MMFs is typically attributed to undetectable deviations from the ideal fiber structure. It is a commonly believed that this\nadditional chaos is unpredictable and that its influence grows with the length of the fiber.\nDespite this, light transport through MMFs remains deterministic and can be characterized by a transmission matrix (TM) which connects the intensity and phase patterns on the fiber input and output facets. Once the TM is known it can be used to create focus in any desired 3D\ncoordinates beyond the distal fiber facet, see figure 1, and perform e.g. fluorescence based\nlaser scanning microscopy or optical trapping.
Optický transport a třídění pomocí tažného paprsku
Brzobohatý, Oto ; Karásek, Vítězslav ; Šiler, Martin ; Chvátal, Lukáš ; Čižmár, Tomáš ; Zemánek, Pavel
Realizovali jsme experimentálně novou metodu třídění suspenze koloidních částic v samostatném širokém laserovém svazku. Třídění se provádí realizací tzv. tažného paprsku slabě fokusovaným laserovým svazkem, jenž je pod malým úhlem zpětně odražen na dielektrickém zrcadle. V tomto uspořádání je příčná poloha vertikálně zachycených částic závislá na směru lineární polarizace svazku. Otočení polarizace o 90 stupňů změní znaménko optické síly působící podél osy z na částice zvolených vlastností a tím i směr pohybu částice. Tento způsob třídění poskytuje překvapivě efektivní metodu pro pasivní roztřídění řádově desítek částic najednou pouhou změnou polarizace.
Vícesvazkové optické manipulace s mikroobjekty a nanoobjekty
Brzobohatý, Oto ; Čižmár, Tomáš ; Šiler, Martin ; Zemánek, Pavel
Bylo užito prostorového modulátoru světla pro vícesvazkové optické manipulace s různými mikroskopickými objekty. Tento unikátní optický systém umožňoval dynamicky měnit optické vlastnosti protiběžných svazků.
Pokročilé techniky optických mikromanipulací
Zemánek, Pavel ; Čižmár, Tomáš ; Šiler, Martin ; Jákl, Petr ; Šerý, Mojmír ; Karásek, Vítězslav ; Brzobohatý, Oto
Dnes již klasický nástroj optických mikromanipulací – optická pinzeta, našla řadu aplikací ve fyzice, biologii a chemii. Nicméně byly vyvinuty nové techniky, které využívají sofistikovanějšího tvarování laserových svazků a umožňují dynamicky měnit počet a polohu manipulovaných mikroobjektů, opticky třídit objekty podle jejich vlastností, doručovat je na milimetrové vzdálenosti nebo dokonce nechat je samoorganizovat po osvícení světlem. Uvádíme několik výsledků z výše zmíněných pokročilých metod vyvinutých v naší laboratoři.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.