Název: Polymeric Hollow Fiber Heat Exchanger Design
Překlad názvu: Polymeric Hollow Fiber Heat Exchanger Design
Autoři: Astrouski, Ilya ; Dohnal, Mirko (oponent) ; Horák, Aleš (oponent) ; Raudenský, Miroslav (vedoucí práce)
Typ dokumentu: Disertační práce
Rok: 2016
Jazyk: eng
Nakladatel: Vysoké učení technické v Brně. Fakulta strojního inženýrství
Abstrakt: This Ph.D. thesis is focused on theory and experimental investigations developing of new knowledge about polymeric hollow fiber heat exchanger (PHFHE). The state-of-the-art study of plastic heat exchangers shows that their usage is limited by several niches where their advantages significantly dominates, or where the use of non-plastic competitors is not impossible. On the other hand, plastic heat exchangers (and PHFHEs in particular) are devices of increasing interest. It is shown that use of small tubes (fibers) allows PHFHEs to be more competitive than conventional plastic heat exchangers. Small hydraulic diameter of a fiber causes high heat transfer coefficients, reduces thermal resistance of plastic wall and allows it to create light and compact design. Detailed study of fluid flow and heat transfer inside the hollow fiber showed that conventional approaches for single-phase laminar flow can be utilized. Poiseuille number equal to 64 and Nussel number about 4 are recommended to be used to predict pressure drops and heat transfer coefficient, respectively. Additional attention should be paid to careful determination of fiber diameter and liquid properties (viscosity). Scaling effects, such as axial heat conduction, thermal entrance region and viscous dissipation can be neglected. The study of outside heat transfer showed that heat transfer on fiber bunches are intense and are competitive to contemporary compact finned-tube heat exchangers. The Grimson approach showed clear correlation with experimental results and, thus is recommended to predict heat transfer coefficients on fiber bunches. Two types of fouling (particulate- and biofouling) of outer fiber surface were experimentally studied. It was found that particulate fouling by titanium oxide particles is not intense and deposits can be removed relatively easy. However, fouling is much more intense when it is associated with biofouling caused by wastewater. In this case, smooth and low-adhesive surface of plastic is not sufficient precaution to prevent deposit formation.
Klíčová slova: biofouling; forced convection; Heat exchanger; heat transfer coefficient; microchannels; natural convection; particulate fouling; plastics; polymeric hollow fibers; pressure drop; biofouling; forced convection; Heat exchanger; heat transfer coefficient; microchannels; natural convection; particulate fouling; plastics; polymeric hollow fibers; pressure drop

Instituce: Vysoké učení technické v Brně (web)
Informace o dostupnosti dokumentu: Plný text je dostupný v Digitální knihovně VUT.
Původní záznam: http://hdl.handle.net/11012/57899

Trvalý odkaz NUŠL: http://www.nusl.cz/ntk/nusl-555627


Záznam je zařazen do těchto sbírek:
Školství > Veřejné vysoké školy > Vysoké učení technické v Brně
Vysokoškolské kvalifikační práce > Disertační práce
 Záznam vytvořen dne 2024-04-02, naposledy upraven 2024-04-03.


Není přiložen dokument
  • Exportovat ve formátu DC, NUŠL, RIS
  • Sdílet