Název:
Finite element approximation of fluid structure interaction using Taylor-Hood and Scott-Vogelius elements
Autoři:
Vacek, Karel ; Sváček, P. Typ dokumentu: Příspěvky z konference Konference/Akce: Topical Problems of Fluid Mechanics 2024, Prague (CZ), 20240221
Rok:
2024
Jazyk:
eng
Abstrakt: This paper addresses the problem of fluid flow interacting a vibrating solid cylinder described by one degree of freedom system and with fixed airfoil. The problem is described by the incompressible Navier-Stokes equations written in the arbitrary Eulerian-Lagrangian (ALE) formulation. The ALE mapping is constructed with the use of a pseudo-elastic approach. The flow problem is numerically approximated by the finite element method (FEM). For discretization of the fluid flow, the results obtained by both the Taylor-Hood (TH) element and the Scott-Vogelius (SV) finite element are compared. The TH element satisfies the Babuška-Brezzi inf-sup condition, which guarantees the stability of the scheme. In the case of the SV element the mesh, that is created as a barycentric refinement of regular triangulation, is used to satisfy the Babuška-Brezzi condition. The numerical results for two benchmark problems are shown.
Klíčová slova:
arbitrary Lagrangian-Eulerian method; finite element method; Scott-Vogelius element; Taylor-Hood element Číslo projektu: GA22-01591S (CEP) Poskytovatel projektu: GA ČR Zdrojový dokument: Topical Problems of Fluid Mechanics, ISBN 978-80-87012-88-8, ISSN 2336-5781 Poznámka: Související webová stránka: https://doi.org/10.14311/TPFM.2024.031
Instituce: Matematický ústav AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v repozitáři Akademie věd. Původní záznam: https://hdl.handle.net/11104/0351299