Název:
Distributed Sequential Zero-Inflated Poisson Regression
Autoři:
Žemlička, R. ; Dedecius, Kamil Typ dokumentu: Výzkumné zprávy
Rok:
2021
Jazyk:
eng
Edice: Research Report, svazek: 2393
Abstrakt: The zero-inflated Poisson regression model is a generalized linear model (GLM) for non-negative count variables with an excessive number of zeros. This letter proposes its low-cost distributed sequential inference from streaming data in networks with information diffusion. The model is viewed as a probabilistic mixture of a Poisson and a zero-located Dirac component, whose probabilities are estimated using a quasi-Bayesian procedure. The regression coefficients are inferred by means of a weighted Bayesian update. The network nodes share their posterior distributions using the diffusion protocol.\n
Klíčová slova:
GLM; Poisson regression; zero inflation