Název: A Logical Characteristic of Read-Once Branching Programs
Autoři: Žák, Stanislav
Typ dokumentu: Výzkumné zprávy
Rok: 2019
Jazyk: eng
Edice: Technical Report, svazek: V-1270
Abstrakt: We present a mathematical model of the intuitive notions such as the knowledge or the information arising at different stages of computations on branching programs (b.p.). The model has two appropriate properties: i) The ”knowledge” arising at a stage of computation in question is derivable from the ”knowledge” arising at the previous stage according to the rules of the model and according to the local arrangement of the b.p. ii) The model confirms the intuitively well-known fact that the knowledge arising at a node of a computation depends not only on it but in some cases also on a ”mystery” information. (I. e. different computations reaching the same node may have different knowledge(s) arisen at it.) We prove that with respect to our model no such information exists in read-once b.p.‘s but on the other hand in b. p.‘s which are not read-once such information must be present. The read-once property forms a frontier. More concretely, we may see the instances of our models as a systems S = (U,D) where U is a universe of knowledge and D are derivation rules. We say that a b.p. P is compatible with a system S iff along each computation in P S derives F (false) or T (true) at the end correctly according to the label of the reached sink. This key notion modifies the classic paradigm which takes the computational complexity with respect to different classes of restricted b.p.‘s (e.g. read-once b.p.‘s, k-b.p.‘s, b.p.‘s computing in limited time etc.). Now, the restriction is defined by a subset of systems and only these programs are taken into account which are compatible with at least one of the chosen systems. Further we understand the sets U of knowledge(s) as a sets of admissible logical formulae. It is clear that more rich sets U‘s imply the large restrictions on b.p.‘s and consequently the smaller complexities of Boolean functions are detected. More rich logical equipment implies stronger computational effectiveness. Another question arises: given a set of Boolean functions (e.g. codes of some graphs) what logical equipment is optimal from the point of complexity?
Klíčová slova: branching programs; computational complexity; logic

Instituce: Ústav informatiky AV ČR (web)
Informace o dostupnosti dokumentu: Dokument je dostupný v repozitáři Akademie věd.
Původní záznam: http://hdl.handle.net/11104/0297795

Trvalý odkaz NUŠL: http://www.nusl.cz/ntk/nusl-396388

Záznam je zařazen do těchto sbírek:
Věda a výzkum > AV ČR > Ústav informatiky
Zprávy > Výzkumné zprávy
 Záznam vytvořen dne 2019-07-25, naposledy upraven 2019-10-20.

Není přiložen dokument
  • Exportovat ve formátu DC, NUŠL, RIS
  • Sdílet