Název:
Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of the discretized operator
Autoři:
Gergelits, Tomáš ; Mardal, K.-A. ; Nielsen, B. F. ; Strakoš, Z. Typ dokumentu: Příspěvky z konference Konference/Akce: SNA´19 - Seminar on numerical analysis, Ostrava (CZ), 20190121
Rok:
2019
Jazyk:
eng
Abstrakt: This contribution represents an extension of our earlier studies on the paradigmatic example of the inverse problem of the diffusion parameter estimation from spatio-temporal measurements of fluorescent particle concentration, see [6, 1, 3, 4, 5]. More precisely, we continue to look for an optimal bleaching pattern used in FRAP (Fluorescence Recovery After Photobleaching), being the initial condition of the Fickian diffusion equation maximizing a sensitivity measure. As follows, we define an optimization problem and we show the special feature (so-called complementarity principle) of the optimal binary-valued initial conditions.
Klíčová slova:
convergence of the conjugate gradient method; eigenvalues of the discretized preconditioned problem; Hall’s theorem; nodal values of the coefficient function; preconditioning by the inverse Laplacian; second order elliptic PDEs Číslo projektu: GC17-04150J (CEP) Poskytovatel projektu: GA ČR Zdrojový dokument: SNA '19 - Seminar on numerical analysis, ISBN 978-80-86407-73-9
Instituce: Ústav informatiky AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v repozitáři Akademie věd. Původní záznam: http://hdl.handle.net/11104/0293164