Název:
A Hybrid Method for Nonlinear Least Squares that Uses Quasi-Newton Updates Applied to an Approximation of the Jacobian Matrix
Autoři:
Lukšan, Ladislav ; Vlček, Jan Typ dokumentu: Příspěvky z konference Konference/Akce: Programs and Algorithms of Numerical Mathematics /19./, Hejnice (CZ), 20180624
Rok:
2019
Jazyk:
eng
Abstrakt: In this contribution, we propose a new hybrid method for minimization of nonlinear least squares. This method is based on quasi-Newton updates, applied to an approximation A of the Jacobian matrix J, such that AT f = JT f. This property allows us to solve a linear least squares problem, minimizing ∥Ad+f∥ instead of solving the normal equation ATAd+JT f = 0, where d ∈ Rn is the required direction vector. Computational experiments confirm the efficiency of the new method.
Klíčová slova:
hybrid methods; nonlinear least squares; numerical algorithms; numerical experiments; quasi-Newton methods; trust-region methods Zdrojový dokument: Programs and Algorithms of Numerical Mathematics 19, ISBN 978-80-85823-69-1
Instituce: Ústav informatiky AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný na vyžádání prostřednictvím repozitáře Akademie věd. Původní záznam: http://hdl.handle.net/11104/0289769