Název:
A Modified Limited-Memory BNS Method for Unconstrained Minimization Derived from the Conjugate Directions Idea
Autoři:
Vlček, Jan ; Lukšan, Ladislav Typ dokumentu: Příspěvky z konference Konference/Akce: Programs and Algorithms of Numerical Mathematics /17./, Dolní Maxov (CZ), 2014-06-08 / 2014-06-13
Rok:
2015
Jazyk:
eng
Abstrakt: A modification of the limited-memory variable metric BNS method for large scale unconstrained optimization of the differentiable function $f:{\cal R}^N\to\cal R$ is considered, which consists in corrections (based on the idea of conjugate directions) of difference vectors for better satisfaction of the previous quasi-Newton conditions. In comparison with [11], more previous iterations can be utilized here. For quadratic objective functions, the improvement of convergence is the best one in some sense, all stored corrected difference vectors are conjugate and the quasi-Newton conditions with these vectors are satisfied. The algorithm is globally convergent for convex sufficiently smooth functions and our numerical experiments indicate its efficiency.
Klíčová slova:
BNS method; convergence; large scale unconstrained optimization; limited-memory variable metric method; numerical experiments; quasi-Newton method Číslo projektu: GA13-06684S (CEP) Poskytovatel projektu: GA ČR Zdrojový dokument: Programs and algorithms of numerical mathematics 17. Proceedings of seminar, ISBN 978-80-85823-64-6 Poznámka: Související webová stránka: http://dml.cz/handle/10338.dmlcz/702689
Instituce: Ústav informatiky AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v repozitáři Akademie věd. Původní záznam: http://hdl.handle.net/11104/0246707