Název:
Meta-Parameters of Kernel Methods and Their Optimization
Autoři:
Vidnerová, Petra ; Neruda, Roman Typ dokumentu: Příspěvky z konference Konference/Akce: ITAT 2014. European Conference on Information Technologies - Applications and Theory /14./, Demänovská dolina (SK), 2014-09-25 / 2014-09-29
Rok:
2014
Jazyk:
eng
Abstrakt: In this work we deal with the problem of metalearning for kernel based methods. Among the kernel methods we focus on the support vector machine (SVM), that have become a method of choice in a wide range of practical applications, and on the regularization network (RN) with a sound background in approximation theory. We discuss the role of kernel function in learning, and we explain several search methods for kernel function optimization, including grid search, genetic search and simulated annealing. The proposed methodology is demonstrated on experiments using benchmark data sets.
Klíčová slova:
computational intelligence; kernel methods; metalearning Číslo projektu: LD13002 (CEP) Poskytovatel projektu: GA MŠk Zdrojový dokument: ITAT 2014. Information Technologies - Applications and Theory. Part II, ISBN 978-80-87136-19-5
Instituce: Ústav informatiky AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v repozitáři Akademie věd. Původní záznam: http://hdl.handle.net/11104/0236830