Název:
Towards Low-Dimensional Gaussian Process Metamodels for CMA-ES
Autoři:
Bajer, Lukáš ; Holeňa, Martin Typ dokumentu: Příspěvky z konference Konference/Akce: ITAT 2014. European Conference on Information Technologies - Applications and Theory /14./, Demänovská dolina (SK), 2014-09-25 / 2014-09-29
Rok:
2014
Jazyk:
eng
Abstrakt: Gaussian processes and kriging models has attracted attention of researchers from different areas of black-box optimization, especially since Jones’ introduction of the Efficient Global Optimization (EGO) algorithm. However, current implementations of the EGO or real-world applications are rather few. We conjecture that the EGO is not suitable for higher-dimensional optimization and try to investigate whether hybridization of a low-dimensional local optimization with the current state-of-the-art continuous black-box optimizer CMA-ES (Covariance Matrix Adaptation Evolution Strategy) could help. In this paper, only a first proposal of such a GP/CMA-ES connection is described and some preliminary tests are presented.
Klíčová slova:
CMA-ES; Gaussian processes; global optimization; metamodel; surrogate model Číslo projektu: GA13-17187S (CEP) Poskytovatel projektu: GA ČR Zdrojový dokument: ITAT 2014. Information Technologies - Applications and Theory. Part II, ISBN 978-80-87136-19-5
Instituce: Ústav informatiky AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v repozitáři Akademie věd. Původní záznam: http://hdl.handle.net/11104/0236768