Název:
Robust Regularized Cluster Analysis for High-Dimensional Data
Autoři:
Kalina, Jan ; Vlčková, Katarína Typ dokumentu: Příspěvky z konference Konference/Akce: MME 2014. International Conference Mathematical Methods in Economics /32./, Olomouc (CZ), 2014-09-10 / 2014-09-12
Rok:
2014
Jazyk:
eng
Abstrakt: This paper presents new approaches to the hierarchical agglomerative cluster analysis for high-dimensional data. First, we propose a regularized version of the hierarchical cluster analysis for categorical data with a large number of categories. It exploits a regularized version of various test statistics of homogeneity in contingency tables as the measure of distance between two clusters. Further, our aim is cluster analysis of continuous data with a large number of variables. Various regularization techniques tailor-made for high-dimensional data have been proposed, which have however turned out to suffer from a high sensitivity to the presence of outlying measurements in the data. As a robust solution, we recommend to combine two newly proposed methods, namely a regularized version of robust principal component analysis and a regularized Mahalanobis distance, which is based on an asymptotically optimal regularization of the covariance matrix. We bring arguments in favor of the newly proposed methods.
Klíčová slova:
big data; cluster analysis; regularization; robust data mining Číslo projektu: GA13-17187S (CEP), GA13-01930S (CEP) Poskytovatel projektu: GA ČR, GA ČR Zdrojový dokument: Proceedings of 32nd International Conference Mathematical Methods in Economics MME 2014, ISBN 978-80-244-4209-9
Instituce: Ústav informatiky AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v příslušném ústavu Akademie věd ČR. Původní záznam: http://hdl.handle.net/11104/0236247