Ústav pro hydrodynamiku

Nejnovější přírůstky:
2018-04-06
16:29
Thermal induced morphological changes of poly(ethylene oxide) nanofibrous webs
Polášková, M. ; Peer, Petra ; Ponížil, P. ; Čermák, R.
The crystallinity of fibres prepared by electrospinning shows lower level in comparison with samples processed by common technologies such as moulding or film casting. Thus, the attempts to improve the structure of electrospun fibres in order to increase physical and mechanical properties of nonwoven webs are obvious. Post-process thermal treatment is one of the possibilities of the crystallinity enhancement that can be easily included to the finishing operation of final products. For the experiment we used poly(ethylene oxide) representing electrospun-friendly material and two solvents - methanol and water, both ensuring good electrospinnability. It is demonstrated that a choice of polymer solvents plays a significant role in fibre diameter and their capabilities to resist applied heat. However, in all cases the enhancement of crystallinity is detected at the short time of thermal exposure.

Úplný záznam
2018-04-06
16:29
The role of solvents in the preparation of hydrophobic nanofibrous membrane containing fumed silica
Peer, Petra ; Polášková, M. ; Musilová, I. ; Filip, Petr
It is well-known that a type of used fumed silica nanoparticles plays a dominant role in wettability of the corresponding nanofibrous mats. As a result, the desired contact angle can be approximately achieved by a choice of adequate fumed silica nanoparticles. However, less attention has been hitherto paid to an active role of solvents in connection with the tailoring this contact angle. For analysis we used poly(vinyl butyral) representing electrospun-friendly material, various types of fumed silica nanoparticles and two solvents - methanol and ethanol. It is demonstrated that a choice of polymer solvents plays a significant role in contact angle changes. Hence, in combination of the type of fumed silica nanoparticles and the type of solvent it is possible to achieve a finer partition of the required contact angles.

Úplný záznam
2018-03-07
15:28
Influence of land cover and altitude on soilmoisturespatio-temporal variability
Šípek, Václav ; Hnilica, Jan ; Tesař, Miroslav
An understanding of spatial and temporal variation of soil moisture is essential for studying other hydrological, biological or chemical soil processes, such as water movement, microbial activity and biogeochemical cycling (Bruckner et al., 1999, Ridolfi et al., 2003). Although the world-wide total amount of water stored in the soil profile is negligible compared to ocean and glacier storages, it represents a crucial variable concerning the water resources and agricultural management. This is valid especially in the context of ongoing shift in climate. Soil water exhibits a tremendous heterogeneity in space and time (Gomez-Plaza et al., 2000). Therefore, spatial and temporal variations of soil moisture have always been the critical issue. The spatial variability is influenced by variety of factors encompassing the topographical effect on lateral water redistribution (Williams et al., 2003), radiation (Grayson et al., 1997, Geroy et al., 2011), soil texture and structure (Famiglietti et al., 1998, Pan and Peters-Lidard, 2008), vegetation (Teuling and Troch, 2005), climate (Lawrence and Hornberger, 2007), precipitation pattern (Keim et al., 2005) and antecedent soil moisture (Rosenbaum et al., 2012). The land use influence on the soil moisture content variation is of complex a character covering several above mentioned factors. However, it is determined namely by the different vegetation cover, which results in different rates of interception and transpiration. It also strongly influences the soil hydraulic properties, i.e. hydraulic conductivity and water retention characteristics (Zhou et al, 2008). Hence, the reaction of an area to a rainfall and also the temporal variability of the soil moisture content might be influenced by the present land cover. Nevertheless, the studies comparing the influence of several land covers in the longer periods are missing. This knowledge would be valuable especially in the context of extreme climatic events that are present nowadays. In central Europe, the period of major floods (1997, 2002, 2013) was followed by serious dry spells (2003, 2011–2012, 2015) (Trnka et al., 2015). This observed hydrological extremity raised the questions of sustainable water management. One of the possible management practices in consideration is represented by the land cover changes intended to hold more water in the landscape and simultaneously to attenuate the rainfall-runoff response. Moreover, previous studies have investigated that spatial and temporal variation of soil water under a certain land use type, and drawing significant research attention is lacking on the differences of dynamics of soil water conditions under different land use types. Thus, it is necessary to understand the comparisons of the dynamics of soil water conditions under different land use types (Niu et al., 2015) The main aim of the presented study is therefore to understand the soil moisture variability in the vegetation season under four different land covers (coniferous/deciduous forest, meadow, grassland). This analysis is conducted in five consecutive years, encompassing both dry and wet periods. The influence of altitude is also studied in the coniferous forest.

Úplný záznam
2018-03-07
15:28
31st Symposium on anemometry: proceedings
Chára, Zdeněk ; Klaboch, L.
Proceedings of 31st Symposium on Anemometry. The conference was oriented on the experimental techniques applied in fluid mechanics.

Úplný záznam
2018-01-11
18:42
Flow of heterogeneous slurry in horizontal and inclined pipes
Vlasák, Pavel ; Chára, Zdeněk ; Konfršt, Jiří ; Kysela, Bohuš
Narrow particle size distribution heterogeneous slurries were investigated on an experimental pipe loop with the horizontal and inclined pipe sections of inner diameter 100 mm. The investigation was focused on the effect of the pipe inclination, average slurry velocity and overall concentration and on the local concentration distribution, pressure drop, deposition limit and carrier liquid-particle slip velocity. The local concentration distribution was studied with the application of a gamma-ray densitometer. Mixture flow-behaviour and particles motion were investigated in a pipe viewing section. The study revealed that the heterogeneous slurries in the horizontal and inclined pipe sections were significantly stratified, the solid particles moved principally close to the pipe invert, and particle saltation becomes the dominant mode of particle conveying for higher and moderate flow velocities. Carrier liquid-particle slip velocity depends not only on the mixture velocity, but also on particle position in the pipe cross-section. The effect of pipe inclination on the frictional pressure drop in inclined pipe sections depends on mixture velocity, in ascending pipe section decreases with increasing mixture velocity and in descending pipe section the frictional pressure drop gradually decreased with increasing pipe inclination.

Úplný záznam
2018-01-11
18:42
In-situ measurement of particle size distribution in an agitated vessel
Kysela, Bohuš ; Konfršt, Jiří ; Chára, Zdeněk ; Šulc, R. ; Ditl, P.
Agitation of solid-liquid suspension or two immiscible liquids is a frequent operation in chemical and metallurgical industries (suspension/emulsion polymerization, catalytic chemical reaction, hydrometallurgical solvent extraction). The product quality, yield and economy of the processes are significantly affected by a mixing process. Prediction of mean particle/drop size and particle/drop size distribution (PSD) during the agitation is fundamental for emulsification, suspension polymerization, solid particle dispersion or crystallization. \nThe aim of this contribution is to propose a simple method of in-situ measurement of particle size distribution. The particle size measurement is based on an image analysis performed on raw image records. Evaluation method based on the best focused particles with sharp detected boundaries enhanced by the analysis of particle circularity was developed. Precise spherical mono-disperse steel and plastic particles were used to verify accuracy of evaluation method. The method has been proposed for the measurement of the time evolution of the drop size distribution in liquid-liquid dispersion in an agitated tank. The effect of droplet size distribution on the impeller speed in wateroil dispersion in agitated vessel was obtained.

Úplný záznam
2018-01-11
18:42
Deposition limit velocity: effect of particle size distribution
Matoušek, Václav ; Visintainer, R. ; Furlan, J. ; McCall II, G. ; Sellgren, A.
Industrial settling slurries often consist of particles of very different sizes - the particle size distribution may cover sizes which differ with two orders of magnitude. A broad particle size distribution affects parameters of slurry flow including deposition limit velocity. We present experimental results of the deposition limit velocity collected during a comprehensive experimental campaign testing slurry flows composed of solids of different fractions in the GIW Hydraulic Laboratory in 2016. Four narrow graded fractions (carrier fluid, pseudo-homogeneous, heterogeneous, and stratified) were tested in permutations from the individual components to the complete mixture at various concentrations. The primary experiments were carried out in a 203-mm pipe, and selected corresponding experiments were repeated in a 103-mm pipe. The experimental results show that interactions among components affect the resulting deposition limit velocity in flows of broadly graded settling slurries. The effect of particle size distribution on the deposition limit velocity is not benign. The deposit velocity is not necessarily lower in a flow of slurry composed of four components than in slurry flow of one component with the highest deposit velocity from the four components. We discuss possible modifications of a deposit velocity predictive model in order to take effects of a broad particle size distribution into account.

Úplný záznam
2017-12-20
13:37
Měření velikosti kapek ve dvoufázovém systému
Kysela, Bohuš ; Konfršt, Jiří ; Chára, Zdeněk ; Kotek, M. ; Šulc, R.
The in-situ measurement method of droplet size in an agitated vessel based on droplet visualisation and image analysis were developed. The image analysis was enhanced by the finding edges algorithm and circularity analysis. The proposed method was validated by the measurements of precise solid particles and used for liquid-liquid mesurements in an agitated vessel.

Úplný záznam
2017-12-20
13:37
Řízený pohyb kulové částice v kanále s volnou hladinou
Chára, Zdeněk ; Kysela, Bohuš ; Konfršt, Jiří
V příspěvku jsou prezentovány experimentální výsledky proudění kolem kulovité částice, kdy částice je umístěna na tenké tyčce a její pohyb je řízen asynchronním motorkem. Pro určení rychlostních polí kolem pohybující se částice byla použita metoda 2D PIV. Měření se uskutečnila v kanále s volnou hladinou, jehož dno bylo pokryto jednou vrstvou skleněných tyček o průměru 6mm.

Úplný záznam
2017-12-07
15:36

Úplný záznam