National Repository of Grey Literature 23,627 records found  1 - 10nextend  jump to record: Search took 0.59 seconds. 

Contribution to Migration Study from the Czech Lands from the 19th century to the year 1938
Valášková, Naďa
The contribution deals with Czech scientific literature published after 1989 and is devoted to the history of emigration from the Czech Lands in the period from the 19th century to 1938. A part of the literature deals with reasons of emigration from the Czech Lands as well as with legal conditions of migration at the period of the Austrian Monarchy. The majority of works deals with migration to various countries of the world

Effect of snowpack on runoff generation during rain on snow event.
Juras, Roman ; Máca, Petr (advisor) ; Ladislav , Ladislav (referee)
During a winter season, when snow covers the watershed, the frequency of rain-on-snow (ROS) events is still raising. ROS can cause severe natural hazards like floods or wet avalanches. Prediction of ROS effects is linked to better understanding of snowpack runoff dynamics and its composition. Deploying rainfall simulation together with hydrological tracers was tested as a convenient tool for this purpose. Overall 18 sprinkling experiments were conducted on snow featuring different initial conditions in mountainous regions over middle and western Europe. Dye tracer brilliant blue (FCF) was used for flow regime determination, because it enables to visualise preferential paths and layers interface. Snowpack runoff composition was assessed by hydrograph separation method, which provided appropriate results with acceptable uncertainty. It was not possible to use concurrently these two techniques because of technical reasons, however it would extend our gained knowledge. Snowmelt water amount in the snowpack runoff was estimated by energy balance (EB) equation, which is very efficient but quality inputs demanding. This was also the reason, why EB was deployed within only single experiment. Timing of snowpack runoff onset decrease mainly with the rain intensity. Initial snowpack properties like bulk density or wetness are less important for time of runoff generation compared to the rain intensity. On the other het when same rain intensity was applied, non-ripe snowpack featuring less bulk density created runoff faster than the ripe snowpack featuring higher bulk density. Snowpack runoff magnitude mainly depends on the snowpack initial saturation. Ripe snowpack with higher saturation enabled to generate higher cumulative runoff where contributed by max 50 %. In contrary, rainwater travelled through the non-ripe snowpack relatively fast and contributed runoff by approx. 80 %. Runoff prediction was tested by deploying Richards equation included in SNOWPACK model. The model was modified using a dual-domain approach to better simulate snowpack runoff under preferential flow conditions. Presented approach demonstrated an improvement in all simulated aspects compared to the more traditional method when only matrix flow is considered.

Effect of year, cultivar and size of seed potatoes on yield and quality of table potato tubers
CHUCHEL, Jan
In this thesis, the effects of year, variety and size of seed tubers on yield and quality of potato tubers were evaluated. In the two years (2011 and 2012), four potato varieties (Velox, Marabel, Adéla and Laura) were used. Size of seed tubers for all varieties was split into three size fractions: A < 35 mm, B 35-60 mm and C > 60 mm. In both years of observation were monitored following parameters: total and marketable yield, average number of stems per plant, number of tubers per plant, number of tubers per stem, the average weight of tuber, proportion of tuber size in harvested tubers, content of dry matter and starch in tubers fresh matter. Year contributed most to the total variability in total and market tuber yield (51.2%. And 54.4%, respectively). Size of seed tubers showed the highest proportion in the total variability of number of stems per plant (94.7%). Declared cooking type in all evaluated varieties was kept. Table value was significantly affected only by variety.

Effect of a graduate of field of study Special Education - tutorship in practice of providers of social care
SALABOVÁ, Jana
Theoretical part of the thesis is divided into 4 main chapters. First one deals with the helping professions generally, their definitions and definition of the Special education - Tutorship branch of study per se.It also briefly touches the subject of readiness of the future graduates to deal effectivelly with the challenges of a career in the field of social services. Chapter number two is called Special education and it defines the subject of special education itself, it's purpose and inner structure. Third chapter focuses on social services. It brings up it's definition and types and forms of social services.It also contains the examples of the institutions which fall into this category and it's providers. Chapter number four, which happens to be the last one in the theoretical part of the thesis, covers the role and purpose of graduates of the special education - tutorship studies. It brings up the definition of a social worker, necessary prerequisites as well as beneficial personality traits and feautures. In a subchapter of chapter four is a short description of a pedagogue tutor. Definition who he actually is, who are proper candidates for this position, what are desired personality traits we look for in tutors and the actual content and purpose of their work in institutions providing social services. The end of chapter four is dedicated to a position of a social worker. His activities, the position and definition of a personal assistant and again personality traits needed for a successful career in this field. The objective of the practical part of the thesis is to describe working of Special education - tutorship studies graduates in practice. Particularly their experiences "from the field", how do they evaluate the level of skill of fresh graduates during their first encounters with the reality, how satisfied are they with their choice of a career so far and what was their motivation to pursue such career. Practical part of the thesis includes qualitative research. To meet the above objectives, data collection technique had been chosen using a structured interview with the respondents, who were graduates of Special education tutorship studies. You can tell by the results of this thesis that graduates in the field of social services apply mostly to lower positions as a social service workers, even though they are qualified to perform as a social workers. The age of clients with whom the respondents work ranges from childhood to senior. The motivation that led those questioned respondents to the decision to choose the area of social services varies. Some reported that they were influenced by the actual practical experience during their studies at the university, when both the work itself and their enthusiasm for the target group played role. Others expressed they had previous experience working with people with disabilities or they just wanted to acquire new experiences. Also, involvement of a family member and their previous education was a motivation. Job satisfaction is evident from observed data, and it also contributes to work done accurately and responsibly. Personal benefits for the respondents according to findings are usually their usefulness at work, new experiences they are getting and last but not least advances of their clients. As the biggest advantage the respondents usually mention variability of their work, target group and the clients in itself and the fact, that their work is highly satisfying and they basically work in a very pleasant team of individuals. On the other hand, not exactly satisfying financial reward and challenging working hours are mentioned as disadvantages. Special education - tutorship studies - the branch they've studied, is by the majority of respondents considered to be beneficial for them and they especially highlight practical impact of practice they completed during their studies and which included visits to various relevant institutions.

Reality of cooperation of a stoma nurse with shift nurses.
KRATOCHVÍLOVÁ, Markéta
Abstract Reality of cooperation of a stoma nurse with shift nurses Pernicious diseases of intestines and rectum often lead to creation of a temporary or permanent intestinal outlet alias stoma. Having been diagnosed, the patient is confided to the care of healthcare workers, in particular nurses, who endeavour to provide the patient with the highest possible quality care in the most intensive manner. At present, almost every hospital has a specially trained stoma nurse who should play the role of an advisor or coordinator in the nursing team. Regrettably, non-cooperation between shift nurses and the stoma nurse harm in particular the patient. Five hypotheses were raised. The first hypothesis was to confirm whether the shift nurses on surgical wards cooperate with the stoma nurse more efficiently than the shift nurses in other than surgical wards. This hypothesis was confirmed. The second hypothesis was to confirm whether the stoma nurse provides the shift nurses with regular information on developments in the concerned area. This hypothesis was not confirmed. The third hypothesis was to confirm whether the shift nurses cooperate with the stoma nurse as early as in the period before the operation; this hypothesis was aimed at surgical nurses and was not confirmed. The fourth hypothesis was to verify whether the shift nurses have sufficient information from the stoma nurse so that they could substitute her adequately when she is absent. This hypothesis was not confirmed. The fifth hypothesis verified whether the shift nurses ask the stoma nurse to provide them with information concerning correct handling of the stomal equipment. This hypothesis was not confirmed. The data were collected in the quantitative research supplemented with an interview with the stoma nurse. The shift nurses in surgical and non-operational wards obtained anonymous questionnaires. The research was conducted in seven hospitals in the Region of South Bohemia. The objectives were fulfilled. The information will be provided to deputy managers for the nursing care and stoma nurses. We believe that our results may contribute to higher efficiency of the cooperation between nurses, which will have a positive impact on provision of comprehensive care of patients with a stoma.

Evaluation of the Success of the Recovery of Claims of Social Security Contributions within the Czech Social Security Administration
Brdičková, Radka ; Kukalová, Gabriela (advisor) ; Ilona, Ilona (referee)
The thesis analyzes the relevant methods of enforcement of debts to the social security contributions and evaluates the succes rate of individual procedures within the Czech social security administration. The first part of the work is focused on defining the theoretical background, as the basic concepts, including the basic layout of the social security. Furthermore, it presents the general procedure of enforcement of claims in the splitting of the administrative and judicial enforcement of the decision and the application of the claims in the other proceedings. In the analytical part are analyzed and compared different methods of enforcement, both in cooperation with court executors and tax execution, especially their impact on the development of receivables and collection of premiums in 2013 and 2014, and the effectiveness of various methods in practise. Based on the survey proposes some possible solutions leading to increased succes practices of individual methods of recovery and also to streamline, improve and speed up the work of employees who deal with debt recovery.

An evaluation of erosion risks and design of erosion control measures in selected cadastral area
Janota, Petr ; Janků, Jaroslava (advisor) ; Karel, Karel (referee)
Erosion is exogenous geomorphological process that affects the formation of the Earth's surface since the formation of the Earth's solid crust. This activity, which under natural conditions proceeded slowly, in terms of human generations imperceptibly, in intensively used landscape dramatically accelerated and brought a number of adverse consequences. The aim of this study has been to assess and evaluate erosion risks in selected cadastral area and in the event of an over limit erosion hazard to suggest appropriate erosion control measures to eliminate the increased erosion. The 77 erosion of closed units were examined by a computer program Atlas DMT erosion module, which uses digital terrain model together with data from databases or BPEJ or LPIS. The 14 of them have diagnosed overlimit value wash away the soil. As a basic erosion control measures the change of applied classic crop rotation to crop rotations using soil conservation technologies was considered. After adjusting cropping practices that positively impact factor of the protective effects of vegetation, it was found by erosion Atlas module, six parcels of land with over limited value of soil washes. These lands have suggested the use of technical erosion control measures, for example furrows, grassing thalwegs etc.. On the parcels, where, due to their size, shape or morphology technical measures proved inadequate or ineffective it has been proposed permanent grassing. In the proposals erosion control measures it is necessary to combine the maximum efficiency of measures with condition of ease and minimal restriction of land users. When their making is to be assumed towards the user, because it depends on him only whether the proposed organizational and agronomic measures will be implemented or not. The fundamental problem with these measures is that their implementation is not backed by legislation. I assume that the more acceptable, less restrictive and inexpensive measures will be proposed, the more likely it will be implemented. One of the reasons why even the simple erosion control measures are put into practice slowly and with difficulty is the fact that in the Czech Republic the most of the agricultural land is managed by entities that are not its owners. This fact significantly contributes to the fact that land is viewed merely as a means of production, which must to bring maximum profit only. To improve this situation may also contribute to the establishment and consistent control of the GAEC standards.

Contribution to the evaluation of different approaches to the modelling of soil loss by water erosion in GIS
Hrabalíková, Michaela ; Janeček, Miloslav (advisor) ; Jan, Jan (referee)
Dissertation thesis: Contribution to the evaluation of different approaches to the modelling of soil loss by water erosion in GIS, is a set of five studies published or accepted for publication in scientific journals. Thematically the work deals with the question of linking the erosion modelling together with geographic information systems. The work is divided into five chapters. In the first chapter, the issue of erosion and rainfall-runoff modelling is described. A particular focus is placed on the concept and the basic equations underlying erosion modelling. The second chapter contains 2 studies that deal with modelling rainfall-runoff conditions in the area of experimental area using KINFIL model. The chapter also discusses the selection of a suitable model and source datasets that forms the basis for the evaluation of physiographic parameters of a catchment. The third chapter is thematically focused in calculating the rainfall factor based on long-term precipitation records from 32 meteorological stations in the Czech Republic. It partially overlaps with the previous chapter because one of the outcomes of the study is the REDES database containing values of R-factor. However, the chapter focuses more on the time scale, and especially the influence of the time step in the simulation on resulting outcomes of the model. The fourth chapter is dealing by erosion modelling in GIS based on analysis of digital terrain models. It contains a study that addresses the influence of various algorithms and/or equations to calculate topographical factor and its effect on the overall prediction of soil loss.

The analysis of the weather impact on the shape and shift of the production frontier
Hřebíková, Barbora ; Čechura, Lukáš (advisor) ; Peterová, Jarmila (referee)
Although weather is a significant determinant of agriculture production, it is not a common practice in production analysis to investigate on its direct impact on the level of final production. We assume that the problem is methodological, since it is difficult to find a proper proxy variable for weather in these models. Thus, in the common production models, the weather is often included into a set of unmeasured determinants that affects the level of final production and farmers productivity (statistical noise, random error). The aim of this dissertation is to solve this methodological issues and find the way to define weather and its impacts in a form of proxy variable, to include this variable into proper econometric model and to apply the model. The purpose of this dissertation is to get beyond the empirical knowledge and define econometric model that would quantify weather impacts as a part of mutually (un)conditioned factors of final production, to specify the model and apply it. The dissertation is based on the assumption that the method of stochastic frontier analysis (SFA) represents a potential opportunity to treat the weather as a specific (though not firm-controllable) factor of production and technical efficiency. SFA is parametric method based on econometric approach. Its starting point is the stochastic frontier production function. The method was presented in the work of Aigner, Lovell and Schmidt (1977) and Meusen and van den Broeck (1977). Unlike commonly used econometric models, SFA is based on analysis of production frontier that is formed by deterministic production frontier function and the compound error term. The compound error term consists of two parts -- random error (statistical noise, error term) and technical inefficiency. Technical inefficiency represents the difference in the actual level of production of the producer, and the maximum attainable (possible) level that would be achieved if the producer used a particular combination of production factors in a maximum technically efficient way. Over time, it has been developed on a number of aspects - see time variant and invariant inefficiency, heteroscedasticity, measurement and unmeasured heterogeneity. Along with the DEA, SFA has become the preferred methodology in the area of production frontier and productivity and efficiency analysis in agriculture. Lately, it has been applied for example by Bakusc, Fertő and Fogarasi (2008) Mathijs and Swinnen (2001), Hockmann and Pieniadz (2007), Bokusheva and Kumbhakar (2008) Hockmann et al. (2007), Čechura a Hockmann (2011, 2012), and Čechura et al. (2014 a, b). We assume that the weather impacts should be analysed with regard to technical efficiency, rather than as a part of statistical noise. Implementation of weather in part of deterministic production function rather than in the statistical noise is a significant change in the methodical approach within the stochastic frontier analysis. Analysis of the weather impacts on the changes in the level of TE has not been greatly recorded in the associated literature and is, therefore, considered as the main contribution of this work for the current theory of production frontier estimation, or the technological effectiveness, in the field of agriculture. Taking into account other variables that are important for the relationship and whose inclusion would enhance the explanatory power of the model was part of the objective of this work.Thus, the possible effect of heterogeneity was taken into account when models were formulated and final results discussed. The paper first defined and discussed possible ways how to incorporate the effects of the weather into production frontier model. Assessing the possibility of inclusion of weather in these models was based on the theoretical framework for the development of stochastic frontier analysis, which defines the concept of technical efficiency, distance functions theory, stochastic production function theory and the methodology and techniques that are applied within the framework of SFA, which were relevant for the purpose of this work. Then, the weather impacts on the shape and shift of production frontier and technical efficiency of czech cereal production in the years 2004-2011 was analyzed. The analysis was based on the assumption that there are two ways how to define variables representing weather in these models. One way is to use specific climatic data, which directly describe the state of the weather. For the purpose of this thesis, the variables mean air temperature (AVTit) and sum of precipitation (SUMPit) in the period between planting and harvest of cereals in the individual regions of Czech republic (NUTS 3) were selected. Variables were calculated from the data on monthly mean air temperatures and monthly sums of precipitation on the regional levels provided by Czech hydro-meteorological institute CHMI. Another way to define weather variable is to use a proxy variable. In this dissertation, the calculation of climatic index (KITit) was applied. Climatic index was calculated as a sum of ratios between the actual yield levels and approximated yield levels of wheat, barley and rye, weighted by the importance of each plant in a cereal production protfolio in each region of the Czech republic. Yield levels were approximated by the linear trend functions, yield and weights were calculated with the use of data on regional production and sown area under individual grains by year at the level of regional production (NUTS 3) provided by Czech Statistical Office. Both ways of weather definition are associated with some advantages and disadvantages. Particular climatic data are very precise specificatopn of the actual weather conditions, however, to capture their impacts on the level of final production, they must be implemented into model correctly along with the number of other factors, which have an impact on the level of final production. Climatic index, on the other hand, relates the weather impacts directly to the yield levels (it has been based on the assumption that the violation from yield trends are caused by the weather impacts), though, it does not accomodate the concrete weather characteristics. The analysis was applied on unbalanced panel data consisting of the information on the individual production of 803 producers specialized on cereal production, which have each the observations from at least two years out of total 8-years time serie. Specialization on crop production was defined as minimum 50% share of cereal production on the total plant production. Final panel consists of 2332 observations in total. The values of AVTit, SUMPit a KITit has been associated with each individual producer according to his local jurisdiction for a particular region. Weather impacts in the three specified forms were implemented into models that were defined as stochastic production frontier models that capture the possible heterogeneity effects. The aim is to identify the impact of weather on shift and shape of production frontier. Through the defined models, the production technology and technical efficiency were estimated. We assume that the proposed inclusion in weather impacts will lead to a better explanatory power of defined models, as a result of weather extraction from a random components of the model, or from a set of unmeasured factors causing heterogeneity of the sample, respectivelly. Two types of models were applied to estimate TE - Fixed management model (FMM) and Random parameter model (RPM). Models were defined as translogarithmic multiple-output distance function. The analyzed endogene variable is cereal production (expressed in thousands of EUR). Other two outputs, other plant production and animal production (both expressed in thousands of EUR) are expressed as the share on cereal production and they appear on the right side of the equation together with the exogene variables representing production factors labour (in AWU), total utilized land (in acres), capital (sum of contract work, especially machinery work, and depreciation, expressed in thousands of EUR), specific material (represented by the costs of seeds, plants, fertilisers and crop protection, expressed in thousands of EUR), and other material (in thousands of EUR). The values of all three outputs, capital, and material inputs were deflated by the the country price indexes taken from the EUROSTAT database (2005=100). In Random parameter model, heterogeneity is captured in random parameters and in the determinants of distribution of the technical inefficiency, uit. All production factors were defined as a random parameters and weather in form of KITit enters the mean of uit and so it represents the possible source of unmeasured heterogeneity of a sample. In fixed management model, heterogeneity is defined as a special factor representing firm specific effects, mi. This factor represents unmeasured sources of heterogeneity of sample and enters the model in interaction with other production factors and the with the trend variable, tit.Trend variable represents the impact of technological change at a time t for each producer i. The weather impacts in form of variables AVTit a SUMPit is, together with production factors, excluded from the set of firm specific effects and it is also numerically expressed. That way weather becomes a measured source of heterogeneity of a sample. Both types of models were estimated also without the weather impacts specification in order to obtain the benchmark against which the effects of weather impacts specification on production frontier and technical efficiency is evaluated. Easier interpretation of results was achieved by naming all five estimated models as follows: FMM is a name of fixed management model that does not include specified weather variables, AVT is a name for fixed management model including weather impacts in form of average temperatures AVTit, SUMP is name of model which includes weather impacts in form of sum of precipitations SUMPit, RPM is random parameter model that does not account for weather impacts, KIT is random parameter model that includes climatic index KITit into the mean of inefficiency. All estimated models fullfilled the conditions of monotonicity and kvasikonvexity for each production factor with the exception of capital in FMM, AVT, SUMP and RPM model. Violating the kvasikonvexity condition is against the theoretical assumptions the models are based on, however, since capital is also insignificant, it is not necesary to regard model as incorrect specification. Violation of kvasikonvexity condition can be caused by the presence of other factor, which might have contraproductive influence on final production in relation to capital. For example, Cechura and Hockann (2014) mention imperfections of capital market as possible cause of inadequate use of this production factor with respect to technological change. Insufficient significancy of capital can be the result of incorrect specification of variable itself, as capital is defined as investment depreciation and sum of contract work in the whole production process and not only capital related to crop production. The importance of capital in relation to crop production is, thus, not strong enough to be significant. Except of capital are all other production factors significant on the significancy level of 0,01. All estimated models exhibit a common pattern as far as production elasticity is concerned. The highest elasticity is attributed to production factors specific and othe material. Production elasticity of specific material reaches values of 0,29-0,38, the highest in model KIT and lowest of the values in model AVT. Production elasticity of other material reahed even higher values in the range 0,40-0,47. Highest elasticity of othe material was estimated by model AVT and lowest by model KIT. Lowest production elasticity are attributed to production factors labour and land. Labour reached elasticity between 0,006 and 0,129 and land reached production elasticity in the range of 0,114 a 0,129. All estimated models displayed simmilar results regarding production elasticities of production factors, which also correspond with theoretical presumptions about production elasticities -- highest values of elasticity of material inputs correspond with naturally high flexibility of these production factors, while lowest values of elasticity of land corresponds with theoretical aspect of land as relativelly inelastic production factor. Low production elasticity of labour was explained as a result of lower labor intensity of cereals sector compared to other sectors. Production elasticity of weather is significant both in form of average temperatures between planting and harvest in a given region, AVTit, and form of total precipitation between planting and harvest in a given region, SUMPit. Production elasticity of AVTit, reach rather high value of 0,3691, which is in the same level as production elasticities of material inputs. Production elasticity of SUMPit is also significant and reach rather high lower value of 0,1489. Both parameters shows significant impact of weather on the level of final crop production. Sum of production elasticities in all models reach the values around 1, indicating constant returns of scale, RS (RSRPM=1,0064, RSKIT=0,9738, RSSUMP =1,00002, RSFMM= 0,9992, RSAVT=1,0018.). The results correspond with the conclusion of Cechura (2009) and Cechura and Hockmann (2014) about the constant returns of scale in cereals sector in Czech republic. Since the value of RS is calculated only with the use of production elasticities of production factors, almost identical result provided by all three specifications of fixed management model is a proof of correct model specification. Further, the significance of technological change and its impact on final production and production elasticities were reviewed. Technological change, TCH, represents changes in production technology over time through reported period. It is commonly assumed that there is improvement on production technology over time. All estimated models prooved significant impact of TCH on the level of final production. All specified fixed management models indicate positive impaact of TCH, which accelerates over time. Estimated random parameter models gave contradicting results -- model KIT implies that TCH is negative and decelerating in time, while model RPM indicates positive impact of TCH on the level of final production, which is also decelerating in time. It was concluded, that in case that weather is not included into model, it can have a direct impact on the positive direction of TCH effect, which can be captured by implementing weather into model and so the TCH becomes negative. However, as to be discussed later, random parameter model appeared not as a suitable specification for analyzed relationship and so the estimate of the TCH impact might have been distorted. The impact of technological progress on the production elasticities (so-called biased technological change) is in fixed management models displayed by parameters representing the interaction of production factors with trend variable. The hypothesis of time invariant parameters (Hicks neutral technological change) associated with the production factors is rejected for all models except the model AVT. Significant baised technological change is confirmed for models FMM and SUMP. Biased technological change is other material-saving and specific material-intensive. In the AVT model, where weather is represented by average temperatures, AVTit, technological change is not significant in relation to any production factors. In both random parameter models, rejection of hypothesis of time invariant parameters only confirms significance of technological change in relation to final crop production. Nonsignificant effect of technological change on production elasticity of labor, land and capital indicates a generally low ability of farmers to respond to technological developments, which can be explained by two reasons. The first reason can the possible complications in adaptation to the conditions of the EU common agricultural market (eg. there are not created adequate conditions in the domestic market, which would make it easier for farmers to integrate into the EU). This assumption is based on conclusion made by Cechura and Hockmann (2014), where they explain the fact that in number of European countries there is capital-saving technological change instead of expected capital-using technical change as the effect of serious adjustment problems, including problems in the capital market.. Second possible reason for nonsignificant effect of technological change on production elasticity of labor, land and capital is that the financial support of agricultural sector, which was supposed to create sufficient conditions for accomodation of technological progress, has not shown yet. Then, the biased TCH is not pronounced in relation to most production factors. Weather impacts (SUMPit, AVTit) are not in significant relation to technological change. Both types of models, FMM and RPM were discussed in relation to the presence of the heterogeneity effects All estimated random parameters in both RPM models are statistically significant with the exception of the production factor capital in a model that does not involve the influence of weather (model RPM). Estimated parameter for variable KITit (0,0221) shows significant positive impact of the weather on the distribution of TE. That way, heterogeneity in relation to TE is confirmed, too, as well as significant impact of weather on the level of TE. Management (production environment) is significant in all three estimated fixed management models. In models that include weather impacts (AVT, SUMP), the parameter estimates indicates positive, slightly decreasing effect of management (or heterogeneity, respectivelly) on the level of final crop production. In model FMM, on the contrary, first and second order parameters of mangement indicate also significant, but negative and decelerating effect of management (heterogeneity) on final crop production. If weather impact is included into models in form of AVTit, or. SUMPit, the direction of the influence of management on the level of final crop production changes. Based on the significance of first order parameter of management, significant presence of heterogeneity of analyzed sample is confirmed in all three estimated fixed management models. As far as the effect of heterogeneity on single production factors (so called management bias) is concerned, the results indicate that in case of model that does not include weather impacts (model FMM) the heterogeneity has positive impact on production elasticities of land and capital and negative effect on the production elasticities of material inputs. In models that account for weather impacts, heterogeneity has negative effect on production elasticities of land and capital and positive effect on the elasticity of material inputs. Heterogeneity effect on the production elasticity of labor is insignificant in all models FMM. In all three estimated models, the effect of heterogeneity is strongest in case of production factors specific and othe material, and, also, on production factor land. In case of FMM model, heterogeneity leads to increase of production elasticity of land, while in AVT and SUMP heterogeneity leads to decrease of production elasticity of land. At the same time, the production elasticity of land, as discussed earlier, is rather low in all three models. This fact leads to a conclusion that in models that accomodate weather impacts (AVT and SUMP), as the effect of extraction of weather from the sources of unmeasured heterogeneity, the heterogeneity has a negative impact on production elasticity of land. It can be stated that the inclusion of weather effects into the sources of unmeasured heterogeneity overestimated the positive effect of unmeasured heterogeneity on the production factor land in the model FMM. Management does not have a significant effect on the weather in form of SUMPit, while it has significant and negative effect on the weather in form of average temperature, AVTit, with the value of -0.0622**. In other words, heterogeneity is in negative interaction with weather represented by average temperatures, while weather in form of the sum of precipitation (SUMPit) does not exhibit significant relation to unmeasured heteregeneity. In comparison with the model that does not include weather impacts, the effect of heterogeneity on the production elasticities has the opposite direction the models that include weather. Compare to the model where weather is represented by average temperature (model AVT), the effect of management (heterogeneity) on the production elasticity of capital is bigger in model with weather represented by sum of precipitations (model SUMP) while the effect of management (heterogeneity) on the production elasticity of land and material imputs is smaller in model with weather represented by sum of precipitations (model SUMP). Technical efficiency is significant in all estimated models. The variability of inefficiency effects is bigger than the variabilty of random error in both models that include weather and models where weather impacts are not specified. The average of TE in random parametr models reaches rather low value (setting the average TE = 54%), which indicates, that specified RPM models underestimate TE as a possible result of incorrect variable specification, or, incorrect assumptions on the distribution of the error term representing inefficiency. All estimated FMM models results in simmilar value of average TE (86-87%) with the simmilar variability of TE (cca 0,5%). Technological change has significant and positive effect on the level of TE in the model that does not specify the weather impacts (model FMM), with a value of 0,0140***, while in the models that include weather in form of average temperatures, or sum of precipitations, respectivelly, technological change has a negative effect on the level of TE (in model AVT = -0.0135***; in SUMP = -0.0114***). It can be stated, that in the model where the weather impacts were not specified, the effect of TCH on the level of TE may be distorted, because the parameter estimate implies also a systematic influence weather in the analyzed period. The effect of unmeasured heterogeneity on the level of TE is significant in all three estimated fixed management models. In models AVT and SUMP, heterogeneity has a positive effect on the level of TE (in AVT = 0.1413 and in SUMP =0,1389), while in the model that does not include weather variable the effect of heterogeneity on the level of TE is negative (in FMM =-0,1378). In models AVT and SUMP, the weather impacts were extracted from the sources of unmeasured heterogeneity, and so from its influence on the level of TE (together with other production factors weather becomes a source of measured heterogeneity). The extraction of the weather from the sources of unmeasured heterogeneity leads to change in the direction of heterogeneity effects on the level of TE from negative (in model where weather was part of unmeasured heterogeneity) to positive. The direct impact of weather on TE is only significant in case of variable AVTit, indicating that average temperatures reduce the level of TE (-0.0622**). Weather in form of sum of precipitations does not have a significant impact on the level of TE. It is evident that incorporating the effects of weather significantly changes the direction of the influence of management on the production of cereals and the direction of influence on the management of production elasticity of each factor in the final model. Analogically with the case of the influence of heterogeneity on the production elasticity of land, it is stated that the weather (included in sources of unmeasured heterogeneity) played a role in the underestimation of the impact of heterogeneity on the overall cereal production. Also, in case that weather was not extracted form the sources of unmeasured heterogeneity would play significant role in underestimation of the effect of heterogeneity on the level of TE. Based on the results of parameters estimates, and on the estimate of average values of TE and its variability, it is concluded, that the effect of inclusion of weather into defined models does not have significant direct impact on the average value of TE, however, its impact on the level of TE and the level of final crop production is pronounced via effects of unmeasured heterogeneity, from which the weather was extracted by its specification in form of AVTit a SUMPit. The analysis results confirms that it is possible to specify the impacts of weather on the shape and shift of production frontier, and, this to define this impact in a model. Results Aaso indicate that the weather reduces the level of TE and is an important source of inefficiency Czech producers of cereals (crop). The model of stochastic frontier produkction function that capture the weather impact was designed, thereby the goal of the dissertation was met. Results also show that unmeasured heterogeneity is an important feature of czech agriculture and that the identification of its sources is critical for achieving higher productivity and higher level of final output. The assumption about significant presence of heterogeneity in production technology among producers was confirmed, and heterogeneity among producers is a significant feature of cereal sector. By extracting weather from sources of unmeasured heterogeneity, the impact of real unmeasured heterogeneity (all that was not extracted from its sources) and the real impact of weather on the level of TE is revealed. If weather was not specified in a model, the TE would be overestimated. Model in form of translogarithmic multiple-output distance function well approximates the relationship between weather, technical efficiency, and final cereal production. Analysis also revealed, that the Random parameter model, which was applied in case that weather impacts were expressed as an index number, is not the suitable model specification due to underestimating of the average level of TE. The problem of underestimation of TE might be caused by wrong variable definition or incorrect assumptions about the distribution of inefficiency term. Fixed management model, on the other hand, appears as a very good tool for identification of weather impacts (in form of average temperatures and sum of precipitations in the period between planting and harvesting) on the level of TE and on the shape and shift of production frontier of czech cereals producers. The results confirm the assumption that it is important to specify weather impacts in models analyzing the level of TE of the plant production. By specification of weather impactzs in form of proper variables (AVTit, SUMPit), the weather was extracted from the sources of unmeasured heterogeneity. This methodical step will help to refine the estimate of production technology and sources of inefficiencies (or, the real inefficiency, respectivelly). That way, the explanatory power of model increase, which leads to generally more accurate estimate of TE. Dissertation has fulfilled its purpose and has brought important insights into the impact of weather on the TE, about the relationship between weather and intercompany unmeasured heterogeneity, about the effect of weather on the impact of technological change, and so the overall impact of weather specification on the shape and shift of production frontier. A model that is suitable application to define these relationships was designed. Placing the weather into deterministic part of production frontier function instead of statistical noise (or, random error, respectivelly) means a remarkable change in the methodical approach within the stochastic frontier analysis, and, due to the fact that the analysis of weather impacts on the level of TE to this extent has not yet been observed in relevant literature, the dissertation can be considered a substantial contribution to current theory of the estimate of technical efficiency of agriculture. The dissertation arose within the framework of solution of the 7th FP EU project COMPETE no 312029.

Bayesian classification of digital images by web application
Talich, M. ; Böhm, O. ; Soukup, Lubomír
The contribution introduces web application for image classification that has been developed at the Research Institute of Geodesy, Topography and Cartography in the framework of grant project InGeoCalc (supported by Ministry of education of the Czech Republic). The web application is aimed to display, examine and classify digital image data. The data are expected to be obtained from Internet by means of Web Map Services (WMS) or from other sources (possibly non-registered). Image data from different sources can be combined and presented as composition of layers (coverage) with adjustable degrees of transparency. After gathering the data, Bayesian (supervised) classification is applied to distinguish separate regions in the image. User can choose between several classification methods and adjust pertinent parameters. Furthermore, several subsequent basic analytical tools are offered, namely computation of distances, areas or perimeters related to the classified regions, simple statistical summaries about classification results (e.g. distribution of classes, percentage of non-classified regions, etc.). The classification results and registration parameters can be saved for further use. The web application is based on common Internet standards (HTML, Javascript, SVG). The only requirement for running the application is an up-to-date Internet browser supporting SVG (Scalable Vector Graphics). Typical usage of the web application can involve land cover mapping based on satellite or aerial images. The application is available free of charge for any Internet user.