National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Role of the yxkO gene of Bacillus subtilis in responce to environmental stress.
Petrovová, Miroslava ; Lichá, Irena (advisor) ; Nešvera, Jan (referee)
ROLE OF THE YXKO GENE OF BACILLUS SUBTILIS IN RESPONCE TO ENVIRONMENTAL STRESS Abstract Mutation of the yxkO gene, which encodes a putative ribokinase and belongs to the σB general stress response regulon, leads to reduced salt tolerance under potassium limitation in Bacillus subtilis. The biological function of the yxkO gene has not been determined yet, but it may be involved in the high affinity potassium uptake system, which has been described in Escherichia coli in contrast to Bacillus subtilis. Our goal was to describe another features of a mutant in the yxkO gene and to try to propose the role of this gene. Using the integration vector pMutin4, we prepared a Bacillus subtilis strain MP2 with a yxkO gene inactivation. The MP2 strain displays limited growth in a rich medium and it is a sensitive strain to tetracycline. Furthermore, this strain is unable to form endospores and the cells are longer, which indicates a septum formation defect. We accomplished a 2-D protein gel analysis to compare expression profiles of the MP2 strain and the 1A680 standard strain after salt and ethanol stress. The MP2 strain shows changes in productions of some energy metabolism enzymes and flagellin protein. We conclude that yxkO is a regulatory gene, whose product has a pleiotropic effect on many of cell functions.
Effect of knock out of yxkO gene on environmental stress adaptation in genus Bacillus
Tkadlec, Jan ; Lichá, Irena (advisor) ; Krásný, Libor (referee)
We have previously characterized a Bacillus subtilis mutant defective in growth and osmoadaptation under limited K+ concentrations. In this mutant, the yxkO gene encoding a putative ribokinase is disrupted. This gene is supposed to belong to the sigma B operon and its expression is induced after osmotic, heat and ethanol shock. In comparison to the wild type, this mutation causes pleiotropic changes in host phenotype. In addition to its osmosensitivity, the mutant differs in cell shape, motility and ability to produce endospores. Our goal was to focus on manifestations of the mutation in the yxkO gene in other bacteria of the genus Bacillus. Using plasmid pMUTIN4 we have prepared mutants with disruptions of this gene derived from Bacillus amyloliquefaciens and Bacillus subtilis subsp. spizizenii strains differing in the yxkO surroundings and in the level of laboratory domestication. As in the previous study (with laboratory strain Bacillus subtilis 168) we demonstrate impaired ability of the mutant strain derived from Bacillus amyloliquefaciens to grow in potassium limitation and osmotic shock. We have studied this phenomenon at the level of the growth dynamics of the bacterial culture. We have also detected an increased sensitivity of the strain derived from Bacillus amyloliquefaciens to...
Effect of knock out of yxkO gene on environmental stress adaptation in genus Bacillus
Tkadlec, Jan ; Lichá, Irena (advisor) ; Krásný, Libor (referee)
We have previously characterized a Bacillus subtilis mutant defective in growth and osmoadaptation under limited K+ concentrations. In this mutant, the yxkO gene encoding a putative ribokinase is disrupted. This gene is supposed to belong to the sigma B operon and its expression is induced after osmotic, heat and ethanol shock. In comparison to the wild type, this mutation causes pleiotropic changes in host phenotype. In addition to its osmosensitivity, the mutant differs in cell shape, motility and ability to produce endospores. Our goal was to focus on manifestations of the mutation in the yxkO gene in other bacteria of the genus Bacillus. Using plasmid pMUTIN4 we have prepared mutants with disruptions of this gene derived from Bacillus amyloliquefaciens and Bacillus subtilis subsp. spizizenii strains differing in the yxkO surroundings and in the level of laboratory domestication. As in the previous study (with laboratory strain Bacillus subtilis 168) we demonstrate impaired ability of the mutant strain derived from Bacillus amyloliquefaciens to grow in potassium limitation and osmotic shock. We have studied this phenomenon at the level of the growth dynamics of the bacterial culture. We have also detected an increased sensitivity of the strain derived from Bacillus amyloliquefaciens to...
Role of the yxkO gene of Bacillus subtilis in responce to environmental stress.
Petrovová, Miroslava ; Lichá, Irena (advisor) ; Nešvera, Jan (referee)
ROLE OF THE YXKO GENE OF BACILLUS SUBTILIS IN RESPONCE TO ENVIRONMENTAL STRESS Abstract Mutation of the yxkO gene, which encodes a putative ribokinase and belongs to the σB general stress response regulon, leads to reduced salt tolerance under potassium limitation in Bacillus subtilis. The biological function of the yxkO gene has not been determined yet, but it may be involved in the high affinity potassium uptake system, which has been described in Escherichia coli in contrast to Bacillus subtilis. Our goal was to describe another features of a mutant in the yxkO gene and to try to propose the role of this gene. Using the integration vector pMutin4, we prepared a Bacillus subtilis strain MP2 with a yxkO gene inactivation. The MP2 strain displays limited growth in a rich medium and it is a sensitive strain to tetracycline. Furthermore, this strain is unable to form endospores and the cells are longer, which indicates a septum formation defect. We accomplished a 2-D protein gel analysis to compare expression profiles of the MP2 strain and the 1A680 standard strain after salt and ethanol stress. The MP2 strain shows changes in productions of some energy metabolism enzymes and flagellin protein. We conclude that yxkO is a regulatory gene, whose product has a pleiotropic effect on many of cell functions.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.