National Repository of Grey Literature 78 records found  previous11 - 20nextend  jump to record: Search took 0.01 seconds. 
An aplication of the mathematical dislocation theory to the problem of the crack in the vicinity of the bi-material interface
Padělek, Petr ; Hrstka, Miroslav (referee) ; Profant, Tomáš (advisor)
The presented diploma thesis deals with a problem of the determination of the stress intensity factor of the finite length crack in the vicinity of the bi-material interface solved by the distributed dislocation technique. The work is divided into several parts. The first part is theoretical and includes basic concepts of the fracture mechanics, the crack behaviour at the bi-material interface, the formulation of the singular integral equation by virtue of the distributed dislocation technique, the Bueckner's principle, complex potentials and consequently the determination of the stress intensity factor. The second part is the theory application to the specific configuration of the crack of the finite length with respect to the bi-material interface and in the third part, there is carried out the solution of this problem for various configurations of the bi-material solved by the distributed dislocation technique and its comparison with the results obtained from the FE analysis.
Crack in prismatic bars
Meňhert, Samuel ; Hrstka, Miroslav (referee) ; Profant, Tomáš (advisor)
This thesis deals with summarization of information about fracture mechanics mainly with methods which estimate stress intensity factors. They play an important role in determination of behavior of cracks in engineering process. The main goal of this thesis will be familiarization with Kienzler hypothesis which deals with strain energy release rate and internal effects in a point of disrupted cross section and comparison with classic K-concept, when the stress intensity factors are determined by infinite series.
Evaluation of Fracture Tests on Selected Building Material Specimens via Double-K Model
Havlíková, Ivana ; Králík,, Juraj (referee) ; Němeček,, Jiří (referee) ; Keršner, Zbyněk (advisor)
The purpose of dissertation is the analysis of the calculation of fracture parameters using Double-K fracture model for quasi-brittle specimens with the stress concentrator loaded by three-point bending or wedge splitting. To calculation of these parameters was used the developed DKFM_BUT software in Microsoft Excel application with using of Visual Basic programming language. Furthermore, the adequate shape functions and compliance functions were introduced for the selected wedge splitting test configurations. Main part of this dissertation is the series of comprehensively implemented and evaluated fracture experiments on specimens from advanced building materials, while the attention was paid to the analysis of experimental data. Finally, the selected results obtained using mentioned software support were presented and discussed.
Influence of Structure Directionality on Fatigue Properties of Formed Al Alloy.
Jíša, David ; Mazal, Pavel (referee) ; Liškutín, Petr (advisor)
The main goal of this diploma thesis is the examination of the influence of structure directionality on fatigue properties of formed aluminium alloy 6082/T6. The main attention is focused on the study of the influence of structure directionality on kinetics of short fatigue cracks growth. The measurement of short fatigue cracks growth was performed on cylindrical samples. The samples were made in two different directions; one parallel with the forming direction and second perpendicular to the forming direction. Servo hydraulic machine MTS 880 was used for the cyclic loading. The samples were cycled at two different constant stress amplitudes. Cyclic loading was systematically interrupted in order to measure the length of short cracks by a light microscope. Tensile tests, measuring of cycling hardening-softening curves, observation of microstructure, observation of surface relief, measuring of microhardness and fractographical analysis of fracture surfaces were used for further examination of the influence of the structure directionality. Some of these measured characteristics did not show any influence of the structure directionality (microhardness, fatigue life curve, Young modulus). In other cases is this influence measurable, however insignificant (yield stress, ultimate stress, cyclic hardening-softening curves and kinetics of short fatigue cracks growth). It can be summarised that the material, though the directionality of its microstructure is apparent, shows relatively isotropic mechanical behaviour.
Analysis of crack propagation using J-integral
Bónová, Kateřina ; Květoň, Josef (referee) ; Eliáš, Jan (advisor)
The bachelor thesis is focused on importance and application of J-integral in crack propagation analysis. J-integral is a method of fracture mechanics used to determine the strain energy release rate. In other words it provides the amount of energy available for crack propagation in elastic and elasto-plastic materials. The thesis presents derivations of relations between J-integral, crack driving force and stress intensity factor. The most important contribution of this thesis is detailed analytical calculation of the J-integral on simple structures. The results are verified by numerical models in ANSYS.
Fatigue crack front shape estimation
Zouhar, Petr ; Klusák, Jan (referee) ; Hutař, Pavel (advisor)
The presented master’s thesis deals with fatigue crack front shape estimation. The aim of this thesis is to create an iterative process leading to the real fatigue crack front shape. Thesis is solved using finite element method. The work is divided into two logical parts. The first part of the thesis describes the basic concepts of linear elastic fracture mechanic (LEFM), methods used for estimation of stress intensity factor and stress singularity exponent. The first part further describes some phenomenon’s accompanying the mechanism of fatigue crack growth as for example crack tip curving and crack closure. In the second part of the thesis there is studied an affect of the free surface on the fracture parameters, especially the affected distance from the free surface is determined. Based on the assumption of a constant stress intensity factor and stress singularity exponent along the crack front, an iterative process leading to fatigue crack front shape is presented. The accuracy of the result is discussed by comparing of obtained crack front shapes with experimental data at the end of the thesis.
Parameters of Fracture Mechanics
Oplt, Tomáš ; Ševeček, Oldřich (referee) ; Horníková, Jana (advisor)
This thesis is the descriptive summary for the most significant parameters of fracture mechanics, required to define stress field on the crack tip. The first and also the most extensive part is divided into two subparts. There are mentioned particular parameters of one-parameter fracture mechanics, firstly are considered linear elastic deformations, thereafter the elastoplastic deformations. The second, shorter part of the thesis, is aimed at multi-parameters stress field description on the crack tip, required for the calculation of constructions with the necessity to consider their geometry.
Problems of the complex potentials of the isotropic elasticity
Kubíček, Radek ; Hrstka, Miroslav (referee) ; Profant, Tomáš (advisor)
The presented diploma thesis concerns linear fracture mechanics and deals with determination of the stress intensity factor of the finite crack, which is located in the vicinity of the bimaterial interface, solved by the distributed dislocation technique and theory of complex potencials. The work is possible to devide into three parts. The first part includes basic concepts of the linear fracture mechanics and is also dedicated to the mechanics of composite materials. The second part deals with the determination of the stress intensity factor from solving singular integral equation formulated by Bueckner's principle and the distributed dislocation technique. The third part includes the specific configuration of the crack with respect to the bimaterial interface and the solution, which is compared with results obtained from the FE analysis.
Analysis of crack behaviour under mixed-mode loading
Antalík, Adam ; Miarka, Petr (referee) ; Malíková, Lucie (advisor)
This bachelor’s thesis deals with the analysis of the stress field in the vicinity of the crack tip, described by the stress intensity factor K. The objective of this thesis is to calculate values of the parameter K for a crack in a rectangular specimen subjected to asymmetric four-point bending. Thus, mixed mode I + II loading conditions occur. The first part of the thesis deals with the fracture mechanics concept. In the second part, a cracked specimen is modelled in the Ansys Mechanical APDL software. In the final part, the resulting values of the parameter K, obtained from the commands KCALC, CINT and two empirical equations, are presented. The MTS criterion is applied for estimation of the crack propagation angel and all results are discussed thoroughly.
Prediction of slow crack growth in polymer pressure pipes
Luky, Robin ; Knésl, Zdeněk (referee) ; Hutař, Pavel (advisor)
A new methodology of polymer pipe lifetime estimation taking into account residual stresses is described in this thesis. Engineering equations derived based on numerical simulations of a hydrostatic pressure test are proposed. Residual lifetime calculations were performed for different loading conditions using experimental data of a creep crack propagation in studied material and stress distribution in the pipe wall. The effects which significantly influence lifetime estimation were quantified with special focus on residual stresses.

National Repository of Grey Literature : 78 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.