National Repository of Grey Literature 14 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
QR code detection under ROS implemented on the GPU
Hurban, Milan ; Věchet, Stanislav (referee) ; Krejsa, Jiří (advisor)
Tato diplomová práce se zabývá vývojem a implementací algoritmu pro detekci QR kódů s integrací do platformy ROS a výpočty běžícími na grafické kartě. Z rešerše současně dostupných nástrojů a technik je vybrán vhodný postup a algoritmus je napsán jako modul v programovacím jazyce Python, který je snadno integrovatelný do ROS. Ke zprostředkování výpočtů na vícejádrovém hardware, jako jsou grafické karty či vícejádrové procesory, je využita knihovna OpenCL.
Computational tasks for solving parallel data processing
Rexa, Denis ; Uher, Václav (referee) ; Mašek, Jan (advisor)
The goal of this diploma thesis was to create four laboratory exercises for the subject "Parallel Data Processing", where students will try on the options and capabilities of Apache Spark as a parallel computing platform. The work also includes basic setup and use of Apache Kafka technology and NoSQL Apache Cassandra database. The other two lab assignments focus on working with a Travelling Salesman Problem. The first lab was designed to demonstrate the difficulty of a task where the student will face an exponential increase in complexity. The second task consists of an optimization algorithm to solve the problem in cluster. This algorithm is subjected to performance measurements in clusters. The conclusion of the thesis contains recommendations for optimization as well as comparison of running with different number of computing devices.
Dynamic Load-Balancing in Parallel Applications
Dvořáček, Vojtěch ; Nikl, Vojtěch (referee) ; Jaroš, Jiří (advisor)
This thesis aims to implement dynamic load balancing mechanism into the parallel simulation model of the heat distribution in a CPU cooler. The first part introduces theoretical foundations for dynamic load balancing, describing current solution approaches. The second part refers to the heat distribution model and related topics such as MPI communications library or HDF library for data storage. Then it proceeds to the implementation of simulation model with dynamic 2D decomposition of square model domain. Custom geometry based dynamic load balancing algorithm was introduced, which works with this decomposition. Important part of the implementation is Zoltan library, used especially for data migration. At the end, a set of experiments was presented, which demonstrates load balancing abilities of designed model together with conclusions and motivation for future research.
Semi - analytical computations and continuous systems simulation
Kopřiva, Jan ; Kubátová, Hana (referee) ; Novitzká,, Valerie (referee) ; Kunovský, Jiří (advisor)
The thesis deals with speedup and accuracy of numerical computation, especially when differential equations are solved. Algorithms, which are fulling these conditions are named semi-analytical. One posibility how to accelerate computation of differential equation is paralelization. Presented paralelization is based on transformation numerical solution into residue number system, which is extended to floating point computation. A new algorithm for modulo multiplication is also proposed. As application applications in solution of differential calculus are the main goal it is discussed numeric integration with modified Euler, Runge - Kutta and Taylor series method in residue number system. Next possibilities and extension for implemented residue number system are mentioned at the end.
Evolutionary Design of Collective Communications Accelerated by GPUs
Tyrala, Radek ; Dvořák, Václav (referee) ; Jaroš, Jiří (advisor)
This thesis provides an analysis of the application for evolutionary scheduling of collective communications. It proposes possible ways to accelerate the application using general purpose computing on graphics processing units (GPU). This work offers a theoretical overview of systems on a chip, collective communications scheduling and more detailed description of evolutionary algorithms. Further, the work provides a description of the GPU architecture and its memory hierarchy using the OpenCL memory model. Based on the profiling, the work defines a concept for parallel execution of the fitness function. Furthermore, an estimation of the possible level of acceleration is presented. The process of implementation is described with a closer insight into the optimization process. Another important point consists in comparison of the original CPU-based solution and the massively parallel GPU version. As the final point, the thesis proposes distribution of the computation among different devices supported by OpenCL standard. In the conclusion are discussed further advantages, constraints and possibilities of acceleration using distribution on heterogenous computing systems.
The realization of selected mathematical computations using graphical cards.
Schreiber, Petr ; Krejsa, Jiří (referee) ; Ondroušek, Vít (advisor)
This work discusses available approaches for programming graphic hardware as a platform for executing parallel calculations. Text of the work is focused on new OpenCL technology, which allows executing the same high level code for taking control of full potential of multicore CPUs and GPUs, without explicit bindings to hardware vendor or operating system. Author provides the reader with libraries and tools based on OpenCL, along with practical examples and own observations about the current state of mentioned technology.
Computational tasks for solving parallel data processing
Rexa, Denis ; Uher, Václav (referee) ; Mašek, Jan (advisor)
The goal of this diploma thesis was to create four laboratory exercises for the subject "Parallel Data Processing", where students will try on the options and capabilities of Apache Spark as a parallel computing platform. The work also includes basic setup and use of Apache Kafka technology and NoSQL Apache Cassandra database. The other two lab assignments focus on working with a Travelling Salesman Problem. The first lab was designed to demonstrate the difficulty of a task where the student will face an exponential increase in complexity. The second task consists of an optimization algorithm to solve the problem in cluster. This algorithm is subjected to performance measurements in clusters. The conclusion of the thesis contains recommendations for optimization as well as comparison of running with different number of computing devices.
Dynamic Load-Balancing in Parallel Applications
Dvořáček, Vojtěch ; Nikl, Vojtěch (referee) ; Jaroš, Jiří (advisor)
This thesis aims to implement dynamic load balancing mechanism into the parallel simulation model of the heat distribution in a CPU cooler. The first part introduces theoretical foundations for dynamic load balancing, describing current solution approaches. The second part refers to the heat distribution model and related topics such as MPI communications library or HDF library for data storage. Then it proceeds to the implementation of simulation model with dynamic 2D decomposition of square model domain. Custom geometry based dynamic load balancing algorithm was introduced, which works with this decomposition. Important part of the implementation is Zoltan library, used especially for data migration. At the end, a set of experiments was presented, which demonstrates load balancing abilities of designed model together with conclusions and motivation for future research.
QR code detection under ROS implemented on the GPU
Hurban, Milan ; Věchet, Stanislav (referee) ; Krejsa, Jiří (advisor)
Tato diplomová práce se zabývá vývojem a implementací algoritmu pro detekci QR kódů s integrací do platformy ROS a výpočty běžícími na grafické kartě. Z rešerše současně dostupných nástrojů a technik je vybrán vhodný postup a algoritmus je napsán jako modul v programovacím jazyce Python, který je snadno integrovatelný do ROS. Ke zprostředkování výpočtů na vícejádrovém hardware, jako jsou grafické karty či vícejádrové procesory, je využita knihovna OpenCL.
Semi - analytical computations and continuous systems simulation
Kopřiva, Jan ; Kubátová, Hana (referee) ; Novitzká,, Valerie (referee) ; Kunovský, Jiří (advisor)
The thesis deals with speedup and accuracy of numerical computation, especially when differential equations are solved. Algorithms, which are fulling these conditions are named semi-analytical. One posibility how to accelerate computation of differential equation is paralelization. Presented paralelization is based on transformation numerical solution into residue number system, which is extended to floating point computation. A new algorithm for modulo multiplication is also proposed. As application applications in solution of differential calculus are the main goal it is discussed numeric integration with modified Euler, Runge - Kutta and Taylor series method in residue number system. Next possibilities and extension for implemented residue number system are mentioned at the end.

National Repository of Grey Literature : 14 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.