National Repository of Grey Literature 13 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Development of chemically resistant sprayed mixture
Hermann, Radek ; Dohnálek,, Pavel (referee) ; Drochytka, Rostislav (advisor)
Production wastes for which a direct use in another production is found become secondary raw materials. There are several institutions in Czech Republic and in the world, which are currently dealing with the issue. This thesis deals with the issue of cementitious spray concrete mixtures and deals with the possibilities of using secondary raw materials and waste from production as partial replacement of binder and filler in these mixtures. The aim of this theses is to optimize the composition of additives in the recipe of the commercially produced pray mixture and to verify the influence of the degree of substitution of binder or filler by secondary raw materials on its physical-mechanical properties. The aim is to maintain or increase these properties while substituting the binder and filler as much as possible. After the evaluation of results, it is possible to say, by suitable optimization of the additives it is possible to achieve a significant improvement of the physical-mechanical properties of the mass and furthermore, from the results of this thesis follows, that by substitution of 100% fine filler in combination with substitution of 30% binder it is possible to maintain or increase the physical-mechanical properties after 28 days of curing and to significantly increase these properties after 90 days of curing. The results of this thesis are also related to the reduction of economic impact on production of the spray mixture, mainly due to the use of secondary raw materials.
Economic aspects of environmental use of building materials based on secondary raw materials.
Ťažký, Tomáš ; Durica,, Tibor (referee) ; Sedlmajer, Martin (referee) ; Nosek,, Karel (referee) ; Kulísek, Karel (advisor)
The disses thesis is focused on usage of secondary raw materials from the electric power industry, specifically fly ash as a component for the building industry, concentrated on concrete. Two main streams are covered, environmental and economical. Reasons, which led to focus on the selected subject are coming mainly from the scarcity and availability of high-quality mineral resources, environmental pressure for usage of industry byproduct, reducing emissions and economical pressure to reduce production cost, especially raw materials. The main purpose of the work was to verify the possibility of increasing the usability of fly ash as a mineral additive in the technology of concrete production with materials retrieved from coal fired power plants and applying mechanical activation of fly ash. The main goal of the experimental part of work was to demonstrate improvement of fresh and hardened concrete properties as a main condition to support economic efficiency of mechanical activated fly ash. Base on previous facts the methodology was covering two main areas, the experimental and the assessment. Relatively large sets of tests were performed, using a wide range of tested high temperature fly ash and fluidized bed combustion fly ash granulometrically treated, by mixing and grinding. Results of the testing confirmed focused parameters for concrete and mortar mechanical properties, total economical efficiency of the targeted solution and the subject of the dissertation. In the experiment section has been retrieved valuable findings contributing to the overall knowledge of the faculty, also for the practical application. The results of the tests confirmed the achievement of the planned target parameters, both in terms of physical and mechanical properties of experienced mortars and concretes, as well as the overall economic efficiency of the proposed design and the topic of the disses thesis. Within the experimental work, valuable professional knowledge and benefits w
Influence of Zinc in Byproducts on Hydration and Properties of Blended Portlands Cements
Šilerová, Iva ; Palou, Martin (referee) ; Rovnaníková, Pavla (referee) ; Havlica, Jaromír (advisor)
The theme of this work is to monitor the effect of zinc on the properties of blended Portland cements. Zinc was tested in the form of two-soluble salts: Zn(NO3)22 H2O and ZnCl2 and a very slightly soluble compound ZnO. Blended cements were prepared by partial replacement with finely ground granulated blast furnace slag, high-temperature and fluidized bed combustion filter fly ash. Flow properties were studied on the prepared pastes. Impact on hydration reactions was examined by using of isothermal and isoperibolic calorimetry. Flexural and compressive strength were measured as mechanical properties of the prepared test specimens. The phase composition of the prepared composites and incorporation of zinc ions in the cement matrix via leaching tests and FTIR analyzes were also studied. Microstructure development of cement samples was tested by SEM analysis with EDS. Influence on ecotoxicity was also measured.
The effect of fly ash on the properties of cement mortars.
Bayer, Petr ; Brandštetr, Jiří (referee) ; Šiler, Pavel (advisor)
The consumption of the cement for construction industries is increased every year. That is associated with greenhouse gas emissions, especially carbon dioxide CO2. Reduction of greenshouse gas emissions can be achieved by maximisation of the use of cementitious and pozzolanic by-products. As by-product could be used blast furnace slag and fly ash. My bachelor’s thesis is focused on the possibility of the partical replacement of the cement by fly ash. High temperature and fluidized fly ashes will be tested. The goal is to examine the behavior of the cement mortars in compensation of 10, 20, 40 and 60 % by weight of cement by fly ash. The compressive and flexural strength and isoperibolic calorimetry measurement were performed.
Electrically conductive composites based on secondary raw materials
Baránek, Šimon ; Šteffan,, Pavel (referee) ; Černý, Vít (advisor)
Electroconductive composites are modern materials that are commonly used in many industries such as the construction industry among others. For example these materials can be useful as sensors for monitoring changes in constructions. The aim of this thesis is the research of electrically conductive silicate composite based on secondary raw materials. The design of this composite is based on the development of its own mixtures and experimental verification of the effect of the structure. The introduction part consists of a detailed analysis of 15 materials. Samples of the 5 fine and 2 coarse electrically conductive fillers were tested. Composite with filler Condufit C4 was selected as representative for type of fine fillers. Composite with filler Supragraphite C300 was selected as representative for type of coarse fillers. The selection of the composites was based on the impedance of the fabricated composites with these fillers. Subsequently, the individual components of the primary mixture were substituted. The cement was replaced by high-temperature fly ash in the amount of 20, 30, and 40 %, the aggregate of a similar fraction was replaced by steel sawdust, and the primary electrically conductive fillers were replaced by secondary ones in the amount of 30 and 50 %. All proposed replacements reduced the impedance of the composite. The most effective replacement for impedance reduction was replacement with waste graphite (up to 92 % reduction), which also slightly improved the mechanical properties of the composite. The result of this thesis is an optimized electrically conductive composite based on secondary raw materials with a fine type of filler with 30 % replacement by waste graphite "odpad vysavač"which achieves an impedance of 5 ohms. The partial goal of this thesis is a verification of the influence of moisture on the impedance of composites. Results are significantly affected by moisture when using the coarse type of filler, when using the fine type are not.
The study of zinc influence on Portland cement hydration.
Ptáček, Martin ; Janča, Martin (referee) ; Šiler, Pavel (advisor)
The topic of this work is the monitoring of the effect of zinc on the hydration process in Portland mixed cement (specifically with the addition of finely ground granulated blast-furnace slag, high temperature fly ash and fluidized bed combustion filter ash). How much zinc and at what time it remains in the pore solution during hydration. Activation energy of a mixture of cement with zinc in the form of soluble salts (Zn(NO3)2.6H2O and ZnCl2) and insoluble oxide (ZnO) by isothermal calorimetry was also investigated. The XRF method has shown composition during hydration. The zinc retardation effect was investigated by isothermal calorimetry and activation energy was calculated using this method. The XRF and ICP-OES methods were used to measure the zinc content of the pore solution. And the amount of portlandite was monitored by the DTA and XRF method.
Economic aspects of environmental use of building materials based on secondary raw materials.
Ťažký, Tomáš ; Durica,, Tibor (referee) ; Sedlmajer, Martin (referee) ; Nosek,, Karel (referee) ; Kulísek, Karel (advisor)
The disses thesis is focused on usage of secondary raw materials from the electric power industry, specifically fly ash as a component for the building industry, concentrated on concrete. Two main streams are covered, environmental and economical. Reasons, which led to focus on the selected subject are coming mainly from the scarcity and availability of high-quality mineral resources, environmental pressure for usage of industry byproduct, reducing emissions and economical pressure to reduce production cost, especially raw materials. The main purpose of the work was to verify the possibility of increasing the usability of fly ash as a mineral additive in the technology of concrete production with materials retrieved from coal fired power plants and applying mechanical activation of fly ash. The main goal of the experimental part of work was to demonstrate improvement of fresh and hardened concrete properties as a main condition to support economic efficiency of mechanical activated fly ash. Base on previous facts the methodology was covering two main areas, the experimental and the assessment. Relatively large sets of tests were performed, using a wide range of tested high temperature fly ash and fluidized bed combustion fly ash granulometrically treated, by mixing and grinding. Results of the testing confirmed focused parameters for concrete and mortar mechanical properties, total economical efficiency of the targeted solution and the subject of the dissertation. In the experiment section has been retrieved valuable findings contributing to the overall knowledge of the faculty, also for the practical application. The results of the tests confirmed the achievement of the planned target parameters, both in terms of physical and mechanical properties of experienced mortars and concretes, as well as the overall economic efficiency of the proposed design and the topic of the disses thesis. Within the experimental work, valuable professional knowledge and benefits w
Electrically conductive composites based on secondary raw materials
Baránek, Šimon ; Šteffan,, Pavel (referee) ; Černý, Vít (advisor)
Electroconductive composites are modern materials that are commonly used in many industries such as the construction industry among others. For example these materials can be useful as sensors for monitoring changes in constructions. The aim of this thesis is the research of electrically conductive silicate composite based on secondary raw materials. The design of this composite is based on the development of its own mixtures and experimental verification of the effect of the structure. The introduction part consists of a detailed analysis of 15 materials. Samples of the 5 fine and 2 coarse electrically conductive fillers were tested. Composite with filler Condufit C4 was selected as representative for type of fine fillers. Composite with filler Supragraphite C300 was selected as representative for type of coarse fillers. The selection of the composites was based on the impedance of the fabricated composites with these fillers. Subsequently, the individual components of the primary mixture were substituted. The cement was replaced by high-temperature fly ash in the amount of 20, 30, and 40 %, the aggregate of a similar fraction was replaced by steel sawdust, and the primary electrically conductive fillers were replaced by secondary ones in the amount of 30 and 50 %. All proposed replacements reduced the impedance of the composite. The most effective replacement for impedance reduction was replacement with waste graphite (up to 92 % reduction), which also slightly improved the mechanical properties of the composite. The result of this thesis is an optimized electrically conductive composite based on secondary raw materials with a fine type of filler with 30 % replacement by waste graphite "odpad vysavač"which achieves an impedance of 5 ohms. The partial goal of this thesis is a verification of the influence of moisture on the impedance of composites. Results are significantly affected by moisture when using the coarse type of filler, when using the fine type are not.
The study of zinc influence on Portland cement hydration.
Ptáček, Martin ; Janča, Martin (referee) ; Šiler, Pavel (advisor)
The topic of this work is the monitoring of the effect of zinc on the hydration process in Portland mixed cement (specifically with the addition of finely ground granulated blast-furnace slag, high temperature fly ash and fluidized bed combustion filter ash). How much zinc and at what time it remains in the pore solution during hydration. Activation energy of a mixture of cement with zinc in the form of soluble salts (Zn(NO3)2.6H2O and ZnCl2) and insoluble oxide (ZnO) by isothermal calorimetry was also investigated. The XRF method has shown composition during hydration. The zinc retardation effect was investigated by isothermal calorimetry and activation energy was calculated using this method. The XRF and ICP-OES methods were used to measure the zinc content of the pore solution. And the amount of portlandite was monitored by the DTA and XRF method.
Development of chemically resistant sprayed mixture
Hermann, Radek ; Dohnálek,, Pavel (referee) ; Drochytka, Rostislav (advisor)
Production wastes for which a direct use in another production is found become secondary raw materials. There are several institutions in Czech Republic and in the world, which are currently dealing with the issue. This thesis deals with the issue of cementitious spray concrete mixtures and deals with the possibilities of using secondary raw materials and waste from production as partial replacement of binder and filler in these mixtures. The aim of this theses is to optimize the composition of additives in the recipe of the commercially produced pray mixture and to verify the influence of the degree of substitution of binder or filler by secondary raw materials on its physical-mechanical properties. The aim is to maintain or increase these properties while substituting the binder and filler as much as possible. After the evaluation of results, it is possible to say, by suitable optimization of the additives it is possible to achieve a significant improvement of the physical-mechanical properties of the mass and furthermore, from the results of this thesis follows, that by substitution of 100% fine filler in combination with substitution of 30% binder it is possible to maintain or increase the physical-mechanical properties after 28 days of curing and to significantly increase these properties after 90 days of curing. The results of this thesis are also related to the reduction of economic impact on production of the spray mixture, mainly due to the use of secondary raw materials.

National Repository of Grey Literature : 13 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.