National Repository of Grey Literature 25 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Fluorescence correlation spectroscopy in the study of the properties of colloidal systems
Marková, Kateřina ; Lehocký, Marián (referee) ; Kapusta, Peter (referee) ; Pekař, Miloslav (advisor)
Because of their properties, hydrogels are a highly sought-after matrix for medical purposes. These properties are often conditioned by the structure, therefore the emphasis is put on a precisely defined polymer network. In the presented dissertation, different types of hydrogels were researched using fluorescence correlation spectroscopy (FCS) in conjunction with microrheology. The combination of aforementioned methods is rarely used when determining the properties of hydrogels, and therefore, the method had to be standardized and optimized. For these purposes, fluorescently labeled silicate nanoparticles with a neutral surface charge were selected. In the course of the method optimization, the limits of the device were discovered within which the measured diffusion coefficients could still be considered valid. Furthermore, we have determined the parameters that affect the MSD curve and thus also the correctness of the actual measured data. An aqueous solution of agarose was chosen as a model colloidal system, as it ranges from a viscoelastic liquid to a solid hydrogel depending on the concentration. On this colloidal system, the diffusion properties of the nanoparticles used were tested as well as the structural properties of the system itself. Limit concentrations were found when the diffusion coefficient could no longer be detected using the selected method. The limit was successfully partially extended by adjusting the correlation time, however, the dispersion of the diffusion coefficient values was very high in such case. The values measured in this way were compared with the calibration-free method of bifocal fluorescence correlation spectroscopy (2f–FCS). Furthermore, changes in the diffusion coefficient were determined depending on the type of sample preparation. Alongside these experiments, image analysis was also performed, which provided interesting results in conjunction with FCS. The last experiment, which provided information about the properties of both the embedded nanoparticles and the polymer system, consisted of washing out of the particles from the hydrogel structure. The maximum entropy method with an analysis using log-normal distribution of diffusion coefficients was selected as the last and the most advanced polymer network analysis of the, which defined the system in a new and an alternative way. The results obtained using these advanced analyses were similar to the data calculated using the mathematical model of anomalous diffusion. The description of properties using rheological modules was a completely new approach. The properties were obtained using a series of conversions from the measured autocorrelation curve. Therefore, a rheological module obtained from microrheological data was the output of the approach. The shape of the curve is comparable to classical (macro)rheology, but the numerical values are lower by an entire order of magnitude. The smallest particles in the entire concentration range behaved as if they were in a purely viscous environment while the largest particles defined the behavior of the system depending on the concentration from very viscous to viscoelastic. The last type of measurement was the study of hyaluronan using selected nanoparticles and its fluorescently labeled analogue. All the methods that were used in the study of agarose hydrogel were applied to the viscoelastic system of hyaluronan to verify their applicability.
Micro/macro-scale investigation of the viscoelastic properties of hydrogel materials
Obrusníková, Klára ; Pekař, Miloslav (referee) ; Smilek, Jiří (advisor)
Tato diplomová diplomová práce byla zaměřená na srovnání mezi mikroreologickými metodami a makroreologickým přístupem, zejména při charakterizaci hydrogelů. Dynamický rozptyl světla, fluorescenční korelační spektroskopie a optická pinzeta byly vybrány jako mikroreologické techniky, zatímco oscilační reometrie sloužila jako makroreologický nástroj. Výsledky z dynamického rozptylu světla a fluorescenční korelační spektroskopie pro hydrogely agarózy a gellanu byly porovnány s reometrií a mezi sebou. Hodnoty viskoelastických modulů získané z mikroreologických měření byly výrazně nižší než ty získané pomocí makroreologie. Jak dynamický rozptyl světla, tak fluorescenční korelační spektroskopie nabízejí širší škálu měřitelných frekvencí než reometrie, ale obě metody mají své limitace při charakterizaci hydrogelů. U dynamického rozptylu světla dochází k odrazu světla od gelové sítě, což způsobuje šum a zhoršuje kvalitu získaných výsledků. Fluorescenční korelační spektroskopie, přes svou vyšší specifitu, vykazuje jen velmi malé rozdíly mezi vzorky různých koncentrací. Optická pinzeta je na Fakultě chemické novou metodou, a byla provedena pouze kalibrační měření. Tuhost optické pasti, důležitá hodnota pro kalibraci optické pinzety, byla stanovena pro roztoky glycerolu.
Microrheology with Fluorescence Correlation Spectroscopy
Kábrtová, Petra ; Sedláček, Petr (referee) ; Mondek, Jakub (advisor)
A comparison of three passive microrheological techniques was made with the emphasis on FCS. Fluorescently labelled and unlabelled polystyrene particles were used to probe a microrheological response of glycerol solutions, Mili-Q water and sodium hyaluronate solutions. In addition, for FCS technique an approximated equation for calculation of MSD values was derived and verified. It was found that FCS outmatches current microrheological techniques of DLS and video-based particle tracking by its ability to gain a broader data range including the area in which, until now, it was impossible to describe a microrheological behaviour of samples reliably.
Microrheology modeling with COMSOL Multiphysics package
Koláček, Jakub ; Sedláček, Petr (referee) ; Pekař, Miloslav (advisor)
This bachelor thesis focuses on modeling Brownian motion using the COMSOL Multiphysics package and its Particle Tracing module. The aim of the work is to design and create elementary models that will be able to suitably simulate the movement of microparticles in viscous and viscoelastic environments, which can later be used for modeling passive microrheology. Within this work, Matlab scripts were created for the calculation of MSD from the simulation results, validation of the viscous model was performed on experimental data and elementary models for the simulation of the viscoelastic environment were also designed. Two different approaches were chosen for the design of these models, namely the use of rigid obstacles under the assumption of a discrete environment and a mathematical model assuming continuous environment. Data from the viscous model showed good agreement with the experimental results. The results of viscoelastic simulations are presented, and further possible development of these models is discussed. The continuous mathematical model is considered closest to modeling viscoelastic behavior because of a characteristic curvature that was observed in the evaluation of MSD.
Derivatization of Sodium Hyaluronate as a Possible Tool for Increasing of the Stability of Model Artificial Synovial Fluid
Hrochová, Eliška ; Mravec, Filip (referee) ; Kalina, Michal (advisor)
This master thesis deals with the optimization of the procedure of modification of hyaluronic acid structure for the use in the artificial synovial liquids. Based on the literature research, the amino acid alanine was used for the modification of carboxylic group in the glucuronic acid. The main subject of study is the improvement of the stability and mechanical properties of synovial liquid. DLS microrheology, macrorheology, thermogravimetric analysis (TGA), multi-angle light scattering with flow-field flow fractionation (AF4-MALS) and infrared spectroscopy (FTIR) were used for characterization. The theoretical part of this theses submits review of the musculoskeletal system, role of hyaluronic acid in metabolism and summary of synovial liquid. The experimental part focuses on the measurement of the stability and mechanical properties of three artificial samples (first with no modification, second with modified hyaluronic acid and third with modified hyaluronic acid and chondroitin sulphate). These samples were compared with real horse synovial fluid and artificial viscosupplement Orthovisc®.
Microrheology in study of biopolmer colloids.
Hnyluchová, Zuzana ; Sedláček, Petr (referee) ; Mravec, Filip (advisor)
A new method for determining the viscoelastic properties of materials was introduced and investigated. Results of three groups of samples obtained using one particle microrheology method, DLS microrheology method and classical rheology method were compared to be sure of correctness of measurements. As a model system were chosen mixtures of glycerol of different viscosities. In case of samples containing glycerol, results were also compared with tabulated values. Hyaluronan of various molecular weights was used as a biopolymer and polystyrene particles were used for microrheology. It was confirmed, that viscosity values of biopolymer samples obtaining by each method are comparable.
Passive microrheology of colloidal systems based on biopolymers.
Bjalončíková, Petra ; Burgert, Ladislav (referee) ; Mravec, Filip (advisor)
Diploma thesis was aimed to deal with evaluation of microrheology method in the research of biopolymer-protein. Used biopolymer was sodium hyaluronate and proteins were trypsin and chymotrypsin. For measuring of microrheology were used particles with different radius (0,5 m and 1 m). It was found, that both substances have viscous charakter. Passive microrheology is suitable for measuring the viscoelastic properties of biopolymers.
Influence of particle properties on microrheological measurements of biopolymer solutions
Hradecká, Lucie ; Venerová, Tereza (referee) ; Hnyluchová, Zuzana (advisor)
This bachelor‘s thesis is focused on the evaluation of particle influence on microrheological measurements of biopolymer solutions. Hyaluronic acid was the biopolymer and glycerol solutions of different concentration were chosen as model system. Polystyrene particles of different diameters (0,5 m, 1 m a 2 m) were used for the measurements. Results of passive microrheology were compared with classic rheology and with tabulated values in case of glycerol.
Time-Resolved Fluorescence in Research of Hyaluronan-Colloidal Systems Interactions
Mondek, Jakub ; Táborský, Petr (referee) ; Peter, Kapusta (referee) ; Pekař, Miloslav (advisor)
The aim of the doctoral thesis was to study advanced fluorescence techniques and its use in colloids or hyaluronan-surfactant systems and hydrogels based on hyaluronan, respectively. Steady-state and time-resolved fluorescence were used to study excited state proton transfer fluroescen probes in hyaluronan-surfactant systems to asses the influence of hyaluronan hydration to its interactions with oppositely charged surfactants. Firstly, different excited state proton transfer fluorescence probes were discussed to choose the most suitable candidate for next research. The influence of hyaluronan on inner environment of micells was determined based on the sensitivity of excited state proton transfer of chosen fluorescence probe 1-naphtol and, based on above mentioned experiments, the structure of hyaluronan hydration shell was discussed. The next part of doctoral thesis was focused on fluorescence lifetime correlation spectroscopy and on the development of method of nanorheology. Measured correlation functions were transformed to mean square displacement with developed MATLAB script. Firstly, the fluorescence method was compared with well described methods such as videomicrorheology and dynamic light scattering to asses the reliability of fluorescence correlation spectroscopy in microrheology. Secondly, nanorheology method was developed and its use in passive nanorheology of hyaluronan hydrogels was discussed. Based on mentioned experiments, the fluorescence correlation spectroscopy microrheology and nanorheology methods were optimized to use the methods in hydrogel research.
Advanced microrheological techniques in the research of hydrogels
Kábrtová, Petra ; Smilek, Jiří (referee) ; Mravec, Filip (advisor)
This diploma thesis deals with the use of fluorescence correlation spectroscopy technique for microrheological characterization of hydrogel in a system of hyaluronate-cetyltrimethylammonium bromide. Fluorescently labelled particles were used for microrheological FCS analysis. To optimize the method the most appropriate size of particles was chosen on the basis of Newtonian glycerol solutions analysis. Among other things, the discussion was focused on the influence of refractive index change of analysed solutions on analysis results. After hyaluronate solutions analysis it was possible to assess the biopolymer concentration and molecular weight impact on the FCS microrheology results, which could then be compared with analysis results of model hydrogels of hyaluronate and CTAB. Finally, usability and limitations of FCS microrheology have been discussed.

National Repository of Grey Literature : 25 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.