National Repository of Grey Literature 22 records found  previous11 - 20next  jump to record: Search took 0.00 seconds. 
Molecular characterization and zoonotic potential of Giardia intestinalis populations from pets.
Hammerbauerová, Iva ; Tůmová, Pavla (advisor) ; Votýpka, Jan (referee)
Giardia intestinalis is a single-celled intestinal parasite infecting humans and animals. The species is divided into eight genetic groups, assemblages, with different host specificity. Stool samples from 99 dogs, 61 cats and 22 chinchillas were examined for the presence of Giardia using microscopy and PCR diagnostics. The found populations were assigned to assemblages using a multi-locus genotyping scheme, with the goal of mapping the occurrence of zoonotic assemblages A and B and evaluating the risk of transmission of Giardia from pets to humans. The Giardia prevalence in examined dogs was 36,4%. The majority of dog infections was caused by dog-specific assemblages D and C. Individual cases of infection with assemblage F, or a mix of assemblages A+D, A+F, B+D, C+D and D+F were also detected. The prevalence in cats was 14.8%, and the dog assemblages C and D prevailed as well. In individual cases, cats were infected with assemblages A or F, which is specific for cats. The highest prevalence, 85.7%, was detected in chinchillas. The majority of chinchilla infections was caused by the zoonotic assemblage B (88.9%). The found sequences were compared to those obtained from animals with clinical giardiasis, but no identical matches were found between these two pools. The nature of mixed infections was studied by...
Maintenance of chromosomes integrity in Giardia intestinails as a model organism.
Uzlíková, Magdalena ; Nohýnková, Eva (advisor) ; Lalle, Marco (referee) ; Stejskal, František (referee)
Giardia intestinalis is a protozoan causing diarrhea worldwide. Beside its medical importance, it is evolutionary distant protist with two nuclei within a cell adapted for parasitic life in the environment poor of oxygen. Its genome is small and compact in term of gene content and size. It is therefore an attractive model organism for studies of minimal requirements for cellular processes. Present work brings new partial information on different levels of chromosome integrity maintenance of this parasite. Our study presents characteristics of chromosome termini and their protection. We localized telomeres during all stages of the trophozoite cell cycle and determined the length of Giardia telomeres ranging from 0.5 to 2.5 kb, we proved an existence of an active telomerase enzyme synthesizing telomeric repeats in in this parasite, despite the fact that giardial telomerase is structurally divergent. Present data support the view that the chromosomal termini in Giardia are maintained in a conservative manner that is common to other eukaryotes. We described effects of commonly used drug for treatment of anaerobic infections, metronidazole, on DNA and cell cycle progression in susceptible and resistant cell lines. Incubation of cells with this drug causes phosphorylation of histone H2A in cell nuclei...
Dynamics of Giardia intestinalis encystation.
Vinopalová, Martina ; Doležal, Pavel (advisor) ; Verner, Zdeněk (referee)
Giardia intestinalis is an anaerobic parasite, that colonizes the small intestine of humans and other vertebrate hosts. This cosmopolitan parasite, which causes diarrhoea, is transmitted by contaminated water or food via a resistant stage, the cyst. The encystation process involves a number of events that lead to a complete reconstruction of the cell into the form of infectious cyst. The aim of this work was to visualize these modifications in vivo by means of enzymatic labelling of proteins. For the purposes of this work, enzymatic tags Y-FAST and HaloTag were chosen, as they enable visualizing live cells under anaerobic conditions. Chimeric protein constructs were created to visualize the dynamics of the encystation vesicles, the structures of endoplasmic reticulum, the adhesive disc and mitosis. Using the developed constructs, we successfully followed the dynamics of the encystation vesicles and the adhesive disc in vivo. Finally, this work has provided novel molecular tools, which will be used to follow the overall redesign of the parasite cell during encystation.
Investigation of newly discovered protein GL50803_16424 in Giardia intestinalis.
Pelc, Josef ; Doležal, Pavel (advisor) ; Pyrih, Jan (referee)
The anaerobic unicellular eukaryotic organism Giardia intestinalis is a worldwide parasite. Giardiasis, the intestinal disease caused by Giardia, is one of the most common parasitic disease in the developed part of the world, that causes health problems not only to humans but also to animals. This organism is also interesting for its many unique cellular features. One of them is the presence of mitosomes - the organelles derived from mitochondria. Analogously to mitochondria, mitosome is limited by two membranes and shares the mode of the protein transport. However, mitosome does not have its own genome and as far as we know, there is only one pathway of the iron-sulfur cluster biosynthesis in this organelle. Using the in vivo enzymatic tagging technique, several novel mitosomal proteins were identified, including GL50803_16424. The protein GL50803_16424 attracted our attention by interacting with components of all mitosomal subcompartments: the outer membrane, the membrane and the matrix. In addition, the expression of HA-tagged GL50803_16424 resulted in the formation of peculiar structures near the mitosomes never seen before in G. intestinalis. Bioinformatic approaches revealed that the GL50803_16424 has domain similar to the myelodysplasia- myeloid leukemia factor 1-interacting protein. Our...
Biogenesis of Giardia intestinalis mitosomes
Voleman, Luboš ; Doležal, Pavel (advisor) ; Faso, Carmen (referee) ; Dawson, Scott C. (referee)
7 ABSTRACT Mitochondria of opisthokonts undergo permanent fusion and fission throughout the cell cycle. Keeping these two processes in balance is vital for various aspects of mitochondrial and cellular homeostasis. Both mitochondrial fusion and division mechanisms are controlled by highly conserved dynamin-related GTPases that are present in all kingdoms of life. The aspects of mitochondrial dynamics outside the opisthokonts is, however, almost completely unexplored phenomenon. In our work, we introduced a tool for live imaging of the reduced forms of mitochondria into model organisms Giardia intestinalis and Trichomonas vaginalis, anaerobic protist parasites from the Excavata supergroup of Eukaryotes. Using this technique, we investigated the dynamics of the mitosomes, the simplest forms of mitochondria, of G. intestinalis. The division of mitosomes is restricted to Giardia mitosis and is absolutely synchronized with the process. The synchrony of the nuclear and the mitosomal division persists also during the encystation of the parasite. Surprisingly, the sole dynamin-related protein of the parasite seems not to be involved in mitosomal division. However, throughout the cell cycle mitosomes associate with the...
Organelle proteomics of parasitic protists
Jedelský, Petr ; Tachezy, Jan (advisor) ; Kolářová, Libuše (referee) ; Půta, František (referee)
Advances in DNA sequencing led to a technological breakthrough, that allowed analyzis of complete genomes including those of parasitic protists Trichomonas vaginalis and Giardia intestinalis . These organisms are studied not only for their clinical importance, but also from the evolutionary point of view for their adaptation to anaerobic environment. Genome sequencing and annotations of predicted proteins alone did not bring detail view into functioning of their mitochondrion related organelles ­ in G. intestinalis mitosomes, not­participating in energetic metabolism, in T. vaginalis hydrogenosomes, producing molecular hydrogen and ATP by means of substrate phosphorylation. Traditional methods based on a fractionation by ultracentrifuging in density gradient and subsequent biochemical and enzymological analyzes were extended by one­ and two­dimensional electrophoresis with subsequent identification of proteins by mass spectrometry. Methods of multidimensional separation of peptides produced by specific proteolysis of a complex mixture...
Cellular Protein Transport and Its Role in Patogenesis
Najdrová, Vladimíra ; Doležal, Pavel (advisor) ; Uzlíková, Magdalena (referee)
The main topic of this thesis are the protein secretion processes in several important human parasites - Toxoplasma gondii, Plasmodium falciparum, Trypanosoma cruzi, Leishmania spp. and Giardia intestinalis. Described here are the parasite's and the host proteins which participate in the pathogenic processes involving the protein secretion. As shown here, the protein secretion into the host environment is one of key tools serving the parasite to survive within and manipulate the host organism. Interestingly, different parasitic organisms use functionally and evolutionary distinct strategies to fulfill this aim. Key words secretory pathway, translocon, signal sequence, Toxoplasma gongii, Plasmodium falciparum, Trypanosoma cruzi, Leishmania spp., Giardia intestinalis
Role of a SNARE protein in the biogenesis of Giardia intestinalis mitosomes.
Voleman, Luboš ; Doležal, Pavel (advisor) ; Nohýnková, Eva (referee)
SNARE proteins play essential role in most membrane fusions taking place in eukaryotic cell. They are responsible for all fusions that occur across endocytic and secretory pathways. Apart from these processes stand mitochondria and plastids. Fusion of these organelles is directed by specific protein machineries. In this work we review up-to-date information on SNARE mediated membrane fusion and fusion of outer and inner mitochondrial membranes with an emphasis on situation in flagellated protozoan parasite Giradia intestinalis. It was suggested that one of typical SNARE protein in Giardia (GiSec20) is localised to its highly reduced mitochondria called mitosomes. This protein is also essential for surviving of Giardia trophozoites. In this work we show that mitosomal localization of Gisec20 is caused by episomal expression however the protein is localised to endoplasmic reticulum under physiological conditions. Using GFP tag we were able to characterize its targeting signal which showed to be localised in transmembrane domain of GiSec20. This signal targets the protein to mitosomes of G. intestinalis and S. cerevisiae, respectively. Mitosomal localization was prevented by adding 3'UTR to gene sequence and its episomal expression. This suggests existence of targeting mechanism based on information...
Protein translocase in the mitosomes of Giardia intestinalis.
Fixová, Ivana ; Doležal, Pavel (advisor) ; Zubáčová, Zuzana (referee)
During the transformation of the bacterial endosymbiont into current mitochondria the protein import apparatus had to be created de novo. The reduced mitochondria (mitosomes) of the parasitic protist Giardia intestinalis represent unique cellular model for the examination of these fundamental transport processes. As the main objective of this project I will try to characterize the motor complex, which propels the protein transport, and also the translocation channel in the inner mitosomal membrane. To this aim I will exploit the presence of two membrane components Pam16 and Pam18, which were discovered in our laboratory, and which constitute the functional core of the motor complex. Based on the information from the analogous systems of yeast and mammalian mitochondria, these two components should physically interact with so far unknown translocation channel. In all other eukaryotes this channel is formed by a conserved protein Tim23. The absence of this protein in the genome of G. intestinalis suggests presence of completely novel, or maybe the original-bacterial protein. Having in hand this simplified mitochodrial model the project has potential to bring not only new data in parasite biology but also generate new information on the function and evolution of mitochondrial protein import.
Genotyping of \kur{Giardia intestinalis} isolates
ŠRÁMOVÁ, Eliška
The aim of this work was assemble isolates of Giardia intestinalis from humans and other mammals. Stools samples were examined for presence of cysts by concentration settling method. Consequently sequencing of 532 bp parts of the TPI gene after previous amplification by the nested PCR was performed. In vitro cultures of selected isolates were established using experimental model hosts, gerbils.

National Repository of Grey Literature : 22 records found   previous11 - 20next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.