National Repository of Grey Literature 10 records found  Search took 0.01 seconds. 
Screening of biotechnological potential of selected members of the genus Geobacillus and other related genuses
Kouřilová, Xenie ; Brázda, Václav (referee) ; Obruča, Stanislav (advisor)
This diploma thesis deals with selected thermophilic representatives of genera Geobacillus, Saccharococcus and Bacillus, taking screening of its biotechnological potential into account. Bacteria from the first two genera came from Czech and German collection of microorganisms, while bacteria of genus Bacillus were natural isolates. Researched strains were examined from a viewpoint of carbon source utilization and furthermore, production of biosurfactants, extracellular hydrolytic enzymes (protease, amylase, lipase, cellulase, xylanase), organic acids, antimicrobial agents and microbial plastics – polyhydroxyalkanoates was also tested. Bacteria S. thermophilus, G. uzenensis and G. zalihae evinced a substantial ability of biosurfactant production. Strains G. jurassicus, G. uzenensis, G. gargensis and G. lituanicus were capable of intensive production of all tested, technologically significant enzymes. Highest antimicrobial effects were reached with bacteria G. stearothermophilus and G. thermocatenulatus. Largest production of acetic acid was achieved with G. jurassicus and lactic acid with G. thermodenitrificans. Ability to produce polyhydroxyalkanoates was proved at genotype level by some cultures only, however at fenotype level, response was negative. On the contrary, bacteria genus Bacillus were able to produce polyhydroxyalkanoates, although in small amounts under given circumstances. With remaining researched metabolites, production ability was considerably lower, compared to genera Geobacillus and Saccharococcus.
The application of magnetic particle for DNA isolation from selekted probiotic products for children
Vozárová, Petra ; Rittich, Bohuslav (referee) ; Španová, Alena (advisor)
In the food industry, it is important to correctly identify the species of bacteria and thier properties so that they can be used as a probiotic in dietary supplements. This is performed using DNA diagnostics. In the experimental part, the DNA from four probiotic dietary supplements for children was isolated. Magnetic particles P(HEMA-co-GMA) were tested for isolation. Isolated DNA was amplified by PCR and the presence of DNA of genus Lactobacillus, Bifidobacterium and Bacillus was demonstrated in the products according to the data declared by the manufacturer. The presence of species L.acidophilus, B.animalis in accordance with the data on the product has been demonstrated by PCR with species specific primers. Using PCR, the presence of L.casei, which was declared by the manufacturer, has not been proven in one product at given experimental conditions.
Cytoplasmic membrane of Bacillus subtilis Regulation of the physical parameters
Beranová, Jana ; Konopásek, Ivo (advisor) ; Branny, Pavel (referee) ; Holoubek, Aleš (referee)
Bacillus subtilis, a model Gram-positive soil bacterium, employs two distinct mechanisms in its membrane adaptation to low temperature: 1) Long-term adaptation to suboptimal temperature is accomplished by increasing the ratio of anteiso- to iso-branched fatty acids in the membrane lipids. 2) After a sudden temperature decrease, the oxygen-dependent fatty acid desaturase (Des) is induced which desaturates fatty-acyl chains incorporated in membrane lipids. The transcription of the gene encoding desaturase, des, is activated by the decrease of the membrane order, via two- component system DesK-DesR. In this work, I studied the influence of cultivation conditions on the mechanisms of B. subtilis membrane adjustments for a low temperature employing fatty acid analysis, fluorescence spectroscopy, differential scanning calorimetry and methods of molecular biology. In the first part of this work, I examined the impact of the cultivation medium on the composition and biophysical features of the B. subtilis cytoplasmic membrane during growth under the optimal (40 řC) and suboptimal (20 řC) cultivation temperature. I compared the nutrient-rich complex medium containing glucose and the mineral medium supplemented with either glucose or glycerol. The results obtained showed the crucial importance of medium...
Screening of biotechnological potential of selected members of the genus Geobacillus and other related genuses
Kouřilová, Xenie ; Brázda, Václav (referee) ; Obruča, Stanislav (advisor)
This diploma thesis deals with selected thermophilic representatives of genera Geobacillus, Saccharococcus and Bacillus, taking screening of its biotechnological potential into account. Bacteria from the first two genera came from Czech and German collection of microorganisms, while bacteria of genus Bacillus were natural isolates. Researched strains were examined from a viewpoint of carbon source utilization and furthermore, production of biosurfactants, extracellular hydrolytic enzymes (protease, amylase, lipase, cellulase, xylanase), organic acids, antimicrobial agents and microbial plastics – polyhydroxyalkanoates was also tested. Bacteria S. thermophilus, G. uzenensis and G. zalihae evinced a substantial ability of biosurfactant production. Strains G. jurassicus, G. uzenensis, G. gargensis and G. lituanicus were capable of intensive production of all tested, technologically significant enzymes. Highest antimicrobial effects were reached with bacteria G. stearothermophilus and G. thermocatenulatus. Largest production of acetic acid was achieved with G. jurassicus and lactic acid with G. thermodenitrificans. Ability to produce polyhydroxyalkanoates was proved at genotype level by some cultures only, however at fenotype level, response was negative. On the contrary, bacteria genus Bacillus were able to produce polyhydroxyalkanoates, although in small amounts under given circumstances. With remaining researched metabolites, production ability was considerably lower, compared to genera Geobacillus and Saccharococcus.
Transcription regulation by sigma factors in Bacillus subtils
Benda, Martin ; Krásný, Libor (advisor) ; Seydlová, Gabriela (referee)
RNA polymerase (RNAP) is a key enzyme in regulation of bacterial gene expression. RNAP is multi-subunit enzyme and its σ subunits (factors) are used for DNA recognition. Regulation of RNAP complexed with the major σ factor has been thoroughly studied; in contrast, mechanisms of regulation of RNAP containing alternative σ factors are much less understood. This thesis is focused mainly on the model organism Bacillus subtilis and its alternative σ factors σF , σG , σI a σK . We studied the ability of RNAP in complex with these factors to recognize promoter sequences, to initiate transcription in dependence on the concentration of the initiating nucleoside triphosphate (iNTP), and to interact with selected proteins. For σF , a promoter regulated by the concentration of iNTP was discovered; for σI , to the contrary, this mechanism was not observed. In the case of σG -dependent transcription we were not able to examine regulation by the concentration of iNTP. Nevertheless, stimulation of σG -dependent transcription by a protein called YlyA, previously described in the literature, was confirmed. This stimulation was newly identified also for σF -dependent transcription. Further, we examined possible functional interaction between HelD and σK , but this link was not confirmed. Finally, this thesis...
Cytoplasmic membrane of Bacillus subtilis Regulation of the physical parameters
Beranová, Jana ; Konopásek, Ivo (advisor) ; Branny, Pavel (referee) ; Holoubek, Aleš (referee)
Bacillus subtilis, a model Gram-positive soil bacterium, employs two distinct mechanisms in its membrane adaptation to low temperature: 1) Long-term adaptation to suboptimal temperature is accomplished by increasing the ratio of anteiso- to iso-branched fatty acids in the membrane lipids. 2) After a sudden temperature decrease, the oxygen-dependent fatty acid desaturase (Des) is induced which desaturates fatty-acyl chains incorporated in membrane lipids. The transcription of the gene encoding desaturase, des, is activated by the decrease of the membrane order, via two- component system DesK-DesR. In this work, I studied the influence of cultivation conditions on the mechanisms of B. subtilis membrane adjustments for a low temperature employing fatty acid analysis, fluorescence spectroscopy, differential scanning calorimetry and methods of molecular biology. In the first part of this work, I examined the impact of the cultivation medium on the composition and biophysical features of the B. subtilis cytoplasmic membrane during growth under the optimal (40 řC) and suboptimal (20 řC) cultivation temperature. I compared the nutrient-rich complex medium containing glucose and the mineral medium supplemented with either glucose or glycerol. The results obtained showed the crucial importance of medium...
The application of magnetic particle for DNA isolation from selekted probiotic products for children
Vozárová, Petra ; Rittich, Bohuslav (referee) ; Španová, Alena (advisor)
In the food industry, it is important to correctly identify the species of bacteria and thier properties so that they can be used as a probiotic in dietary supplements. This is performed using DNA diagnostics. In the experimental part, the DNA from four probiotic dietary supplements for children was isolated. Magnetic particles P(HEMA-co-GMA) were tested for isolation. Isolated DNA was amplified by PCR and the presence of DNA of genus Lactobacillus, Bifidobacterium and Bacillus was demonstrated in the products according to the data declared by the manufacturer. The presence of species L.acidophilus, B.animalis in accordance with the data on the product has been demonstrated by PCR with species specific primers. Using PCR, the presence of L.casei, which was declared by the manufacturer, has not been proven in one product at given experimental conditions.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.