National Repository of Grey Literature 47 records found  beginprevious38 - 47  jump to record: Search took 0.01 seconds. 
Effect of plasticizers on the behaviour and properties of alkali activated materials
Langová, Markéta ; Koplík, Jan (referee) ; Kalina, Lukáš (advisor)
Alkali activated materials could be suitable alternative to construction materials based on ordinary Portland cement (OPC). Therefore, it is advisable to pursue these binders further on. Aim of this thesis is to clarify the effect of lignosulfonate-based plasticizer and polycarboxylate-based superplasticizer on the behaviour and nature of alkali activated materials. For the purposes of studying the efficiency of plasticizing additives, the change of workability of alkali activated blast furnace slag in dependence on time, effect of additives on mechanical properties as well as, with usage of isothermal calorimetry, their impact on kinetics of solidification and hardening had been observed. The stability of the plasticizing admixtures in a high alkaline environment such as water glass and sodium hydroxide had been studied using infrared spectrometry. As a last step, X-ray photoelectron spectroscopy (XPS) had been used while clarifying the chemical changes in the structure of plasticizing additives after adsorption to blast furnace slag.
Influence of ionts on the efficiency of shrinkage reducing admixtures in alkali activated systems
Vašíčková, Kateřina ; Bílek, Vlastimil (referee) ; Kalina, Lukáš (advisor)
Alkali activated materials, especially when activated with waterglass, are subjected to substantial drying shrinkage that hinders their broader industrial application. The effect of shrinkage reducing admixtures (SRA), based on poly(propylene glycol), on drying shrinkage of alkali activated blast furnace slag (BFS) mortars was studied. The aim of this thesis is to determine the efficiency of SRA as well as the influence of different type of alkali activator with varying silicate modulus on drying shrinkage characteristics. It was observed that the high amount of alkalis positively influenced the effect of SRA. The higher the amount of alkalis, the lower the drying shrinkage was. It also caused more water to be incorporated in the alkali activated structure and prevent it from evaporation. Thus, the weight change of such mortars was the lowest. Reduced effect of SRA on mechanical strength properties was observed in mortars with low amount of alkalis which was connected with delayed hydration resulting in insufficient amount of created C-S-H gel. The presented thesis further discussed and underlines the role of different kinds of alkali ions as well as their amount on the properties of alkali activated BFS systems.
Effect of the composition of alkaline activator on the properties of hybrid cements
Šimko, Lukáš ; Vyšvařil, Martin (referee) ; Rovnaník, Pavel (advisor)
Building industry, especially production of Portland cement is the most ecologically and energetically demanding sector. Therefore, there is an effort of using waste products of energy industry as a (partial) substitution of conventional building materials. This bachelor thesis deals with the possibility of using the power station fly ash as a major part of mixtures with Portland cement, and therefore as a hybrid cement. In the experimental part, the influence of silicate module on the characteristics of mortars, whose binder is composed of 20% of Portland cement and 80% of fly ash from Dětmarovice power station, is examined. It further deals with influence of composition of alkaline activator on its characteristics. Its properties are examined in terms of porosity, strength and microstructure. Size and distribution of pores are examined by means of mercury intrusion porosimetry and evaluation of microstructure is based on scanning electron microscopy.
Durability of alkali-activated materials
Zourek, Milan ; Hela, Rudolf (referee) ; Bodnárová, Lenka (advisor)
This bachelor’s thesis deals with durability of alkali-activated materials and the use of them in aggressive surroundings, especially in sewer systems. The first half of the theoretical part summarizes requirements for concrete sewer pipes. The most common linings and coatings used in concrete sewer systems are mentioned. The second half of the theoretical part deals with alkali-activated materials, raw materials used for their preparation and their durability. Concretely sulfate attack resistance, chloride attack resistance, acid attack resistance, abrasion, porosity, freeze-thaw resistance, thin layer applications and cracking tendency. In the experimental part of this bachelor’s thesis there were proposed five types of alkali-activated materials application in the aggressive environment of sewer systems. Density and consumption of alkali-activated material by thin layer application was determined as fresh properties. Material was monitored during its solidifying and hardening, especially for crack formation. As hardened properties density, flexural strength, compressive strength, adhesion of thin layer to concrete, thickness of thin layer, freeze-thaw resistance, resistance of surface to water and defrosting chemicals were determined.
Fibre coposites with alkali -activated slag matrix
Pluskalová, Barbora ; Bayer, Patrik (referee) ; Rovnaník, Pavel (advisor)
This master thesis is concerns the preparation of Alkali Activated Materials, specifically Alkali Activated Slag (AAS), with the addition of fiber reinforcement. Alkali Activated Materials have great potential for use in construction practice. However, their use is limited by certain undesirable properties, which can be diminished by adding fiber reinforcement. This thesis deals with the influence of carbon fibers (2 % by weight of the binder) and carbon nanotubes (0,2 % by weigh of the binder) on the mechanical properties, microstructure and shrinkage of AAS. The results of the experiments which were carried out correspond with the literary research. Conclusions of this thesis agree with research published in original scientific papers.
The development of composites based on inorganic binders designed for the extreme applications
Janoušek, Petr ; Šácha, Libor (referee) ; Dufka, Amos (advisor)
The topic of this master's thesis is the development of composite materials based on inorganic binders for use in extreme conditions. It means especially geopolymeric or alkali activated materials (AAM) based composites. The theoretical part of this thesis summarizes knowledges about the development and use of alkali-activated materials, their structure and mechanisms of their formation. It also deals with the applicable raw materials for AAM and their exciters, which are in particular water glass and sodium hydroxide. There also have been a summary of the effects of high temperatures and chemicals on the mechanical properties of AAM and the requirements of standard EN 1504-3 for repairing materials. The task of the practical part was to develop a repair mortar for concrete structures based on AAM so that its production was as simple as possible, ie one-component materials. Gradually six recipes have been develeoped. Test specimens made from these recipes have been putted to selected tests according to the requirements of ČSN EN 1504-3.
Durability of alkali-activated systems
Šafář, Martin ; Šoukal, František (referee) ; Kalina, Lukáš (advisor)
Alkali activated binders have the potential to become an alternative construction material to ordinary portland cement binders. This thesis concentrates on durability testing of alkali activated blast furnace slag and fly ash based concrete. The chosen aspects of durability included sulfate resistance, acid resistance, carbonation, freeze-thaw resistance, frost-salt resistance and porosity. Microstructural changes and formation of new crystalline phases were observed using XRD and SEM-EDX analysis. Potential application of the tested material from the durability point of view was evaluated by comparison with a reference ordinary portland cement based concrete.
Possibilities of the utilization of the waste sand from the water glass production in building industry
Bílek, Vlastimil ; Kalina, Lukáš (referee) ; Opravil, Tomáš (advisor)
Nowadays, the waste sands from the water glass production have no utilization and due to high alkali content are considered as a dangerous waste. So the aim of this thesis is to find and study some possibilities of their utilization in the building industry. First of all, some necessary analysis of these sands were performed and then some advantages and disadvantages of their application for production of materials based on portland cement and alkali activated materials were studied. Characteristics of fresh and hardened pastes, mortars and concretes containing these waste sands were determined. The most tested properties were their workability and their compressive and flexural strength. Close attention for the risks of alkali-silica reaction and for options of its suppressing by the mineral admixtures was paid.
Influence of inorganic admixtures on shrinkage reduction of alkali activated materials
Šístková, Pavlína ; Koplík, Jan (referee) ; Kalina, Lukáš (advisor)
This bachelor thesis is focused on the influence of inorganic admixtures on shrinkage reduction of alkali activated materials. In the theoretical part the issue of alkali activated materials is explained in detail focusing on the reduction of their shrinkage. Alkali activated system is constituted by alkali activated blast furnace slag. Firstly, the effect of inorganic dashes is monitored such as low calcium fly ash and finely ground limestone. Furthermore, the influence of inorganic additives for reducing shrinkage has been studied, namely magnesium oxide and calcium oxide. The aim of this work is to determinate the mechanical properties and shrinkage of individual alkali activated mixture and then discuss whether there was a reduction of shrinkage and what the effect of added dashes and inorganic admixtures was.
Setting control of alkali-activated systems
Komosná, Kateřina ; Novotný, Radoslav (referee) ; Kalina, Lukáš (advisor)
This thesis is focused on the possibilities of setting control of alkali-activated systems based on blast furnace slag. The aim of this work is finding the suitable retarder that most extends the time of setting and also preserves the mechanical properties of alkali-activated material. In experimental section were prepared samples of blast furnace slag, water glass, water and additives in various weight addition. Testing samples have undergone of flexural and compressive strength tests. Then the setting time was determined using the Vicat device. The samples were measured calorimetrically because of monitoring the setting process. Finally the mixtures were observed using scanning electron microscope for a closer view on the structure of samples and distribution of setting retarder.

National Repository of Grey Literature : 47 records found   beginprevious38 - 47  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.