National Repository of Grey Literature 6 records found  Search took 0.04 seconds. 
Microfluidic systems in silicon technology
Juránek, Dominik ; Fecko, Peter (referee) ; Gablech, Imrich (advisor)
This thesis is devoted to the topic of microfluidics and the functionality of microfluidic devices when working with blood. It further focuses on the use of microfluidic devices to cut blood cells. The first part of this work is dedicated to the theoretical background of microfluidics, it briefly introduces the history of microfluidic devices and the materials used for their integration, moreover, it talks about the methods used when constructing a microfluidic device in a silicon substrate. Lastly, this section includes a description of blood and its composition and some properties important for working with microfluidic devices. The practical part is concerned with the (manufacturing procedure of) creating a microfluidic and testing of device that can cut red blood cells.
Possibilities to monitor the effect of increased consumption of vegetables and omega-3 fatty acid food sources to the level of dairy oxidants and omega-3 fatty acids in the blood plasma of consumers.
SVOBODOVÁ, Jana
The aim of the work is to obtain specific data on the consumption of food sources of omega-3 fatty acids and food antioxidants in pupils from 6-15 years of primary school fed in a selected school canteen. In this respect, an analysis of the food consumed in the school canteen was therefore performed, from data reported monthly by the canteen in so-called consumer baskets. In addition, monitoring was performed on the effect of a defined supplement with omega-3 fatty acids at the level of their levels in blood plasma and blood cells. Furthermore, monitoring was performed by gas chromatography. The obtained results were processed tabularly, graphically and evaluated with the help of statistical methods.
Microfluidic systems in silicon technology
Juránek, Dominik ; Fecko, Peter (referee) ; Gablech, Imrich (advisor)
This thesis is devoted to the topic of microfluidics and the functionality of microfluidic devices when working with blood. It further focuses on the use of microfluidic devices to cut blood cells. The first part of this work is dedicated to the theoretical background of microfluidics, it briefly introduces the history of microfluidic devices and the materials used for their integration, moreover, it talks about the methods used when constructing a microfluidic device in a silicon substrate. Lastly, this section includes a description of blood and its composition and some properties important for working with microfluidic devices. The practical part is concerned with the (manufacturing procedure of) creating a microfluidic and testing of device that can cut red blood cells.
Expression and function of cellular prion protein in blood cells
Glier, Hana ; Holada, Karel (advisor) ; Živný, Jan (referee) ; Rusina, Robert (referee)
The cellular prion protein (PrPc) is essential for pathogenesis of fatal neurodegenerative prion diseases. Recently reported four cases of vCJD transmission by blood transfusion raise concerns about the safety of blood products. Proper understanding of PrPc in blood is necessary for development of currently unavailable blood screening tests for prion diseases. Flow cytometry is an attractive method for prion detection, however, the reports on the quantity of PrPc on human blood cells are contradictory. We showed that the majority of PrPc in resting platelets is present in the intracellular pool and is localized in α-granules. We demostrated that both, human platelets and red blood cells (RBC) express significant amount of PrPc and thus may play an important role in the transmission of prions by blood transfusion. Our results suggest a unique modification of PrPc on human RBC. Such modification of pathological prion protein could distort the results of blood screening tests for prions. Further we showed that the storage of blood prior to analysis and the choice of anti-prion antibody greatly affect the detection of PrPc by flow cytometry and we identified platelet satellitism as a factor contributing to the heterogeneity of PrPc detection in blood cells. Moreover, we demonstrated existence of...
Anaemia disease models
Vondráková, Zuzana ; Bartůněk, Petr (advisor) ; Stopka, Tomáš (referee)
Hematopoiesis is a process by which blood cells are generated. All vertebrates have two phases of hematopoiesis - primitive and definitive. The main purpose of primitive hematopoiesis is the production of red blood cells, which provide oxygenation to the developing embryo. Other blood cell lineages are established by definitive hematopoiesis. The main function of erythrocytes is oxygen transport to all tissues. When erythrocyte production is decreased or they are damaged due to the membrane, enzyme or hemoglobin impairment, the condition called anemia arises. Sickle cell disease and β-thalassemia are called hemoglobinopathies as they are caused by the damaged hemoglobin. Fanconi anemia is caused by mutations in one of 21 genes of Fanconi anemia pathway, which plays an essential role in DNA repair. Diamond Blackfan anemia is caused by mutations gene for ribosomal proteins. Human cells, Mus musculus, Gallus gallus, Xenopus laevis and Danio rerio seem to be good models for study of this diseases and they are also useful for achieving therapeutical goals.
Expression and function of cellular prion protein in blood cells
Glier, Hana ; Holada, Karel (advisor) ; Živný, Jan (referee) ; Rusina, Robert (referee)
The cellular prion protein (PrPc) is essential for pathogenesis of fatal neurodegenerative prion diseases. Recently reported four cases of vCJD transmission by blood transfusion raise concerns about the safety of blood products. Proper understanding of PrPc in blood is necessary for development of currently unavailable blood screening tests for prion diseases. Flow cytometry is an attractive method for prion detection, however, the reports on the quantity of PrPc on human blood cells are contradictory. We showed that the majority of PrPc in resting platelets is present in the intracellular pool and is localized in α-granules. We demostrated that both, human platelets and red blood cells (RBC) express significant amount of PrPc and thus may play an important role in the transmission of prions by blood transfusion. Our results suggest a unique modification of PrPc on human RBC. Such modification of pathological prion protein could distort the results of blood screening tests for prions. Further we showed that the storage of blood prior to analysis and the choice of anti-prion antibody greatly affect the detection of PrPc by flow cytometry and we identified platelet satellitism as a factor contributing to the heterogeneity of PrPc detection in blood cells. Moreover, we demonstrated existence of...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.