National Repository of Grey Literature 28 records found  previous11 - 20next  jump to record: Search took 0.00 seconds. 
Changes in domain organization of the plasma membrane in the stress response
Vaškovičová, Katarína ; Malínský, Jan (advisor) ; Zimmermannová, Olga (referee) ; Cvačková, Zuzana (referee)
MCC/eisosomes are yeast plasma membrane microdomains that respond to changes in both extracellular and intracellular conditions and activate important stress-related signaling pathways. In this study, we investigated the function of MCC/eisosomes under the conditions of chronic glucose depletion. We found that MCC/eisosomes regulate mRNA decay under these conditions. Specifically, we demonstrated that the sequestration of the evolutionarily conserved Xrn1 exoribonuclease at MCC/eisosomes leads to the attenuation of its enzymatic activity. Modulation of activity by the enzyme localization may represent a novel and effective mechanism in regulation of biochemical pathways. Moreover, our results suggested that an MCC protein Nce102 might play a role in vacuolar fusion and lipid droplets degradation. We demonstrated that prolonged chronic glucose depletion induces the translocation of Nce102 from MCC to sterol-enriched microdomains in the vacuolar membrane. Deletion mutants lacking Nce102 and its functional homologue Fhn1 exhibited significant delay in vacuole maturation and in turnover of a lipid droplet marker Erg6. The function of MCC/eisosomes in the stress response have been demonstrated in many fungal species. Similar to the microdomain function, also individual protein components of...
Evolutionarily conserved mechanisms of gene expression regulation by nuclear receptors.
Chughtai, Ahmed Ali ; Kostrouch, Zdeněk (advisor) ; Malínský, Jan (referee) ; Brábek, Jan (referee)
Transcriptional regulation of gene expression in eukaryotes has evolved over millions of years. The regulatory pathways of nuclear receptors represent an evolutionarily ancient, but conserved mechanism with associated accessory proteins, many of them forming a functional nexus known as the Mediator complex involved in transcription. Despite the versatility of the pathway, e.g. through the adoption of new regulatory functions in phylogenetically more recent Metazoa, we hypothesise that the intrinsic potential of the NR-Mediator axis to directly translate a stimulus to a biological response is conserved across species, and additional regulation could also be achieved through secondary functions of its essential members. To support the hypothesis, we assessed the ligand-binding capability of retinoic X receptor in Trichoplax adhaerens and provided evidence to support the concept that this capability was already present at the base of metazoan evolution. With regards to the potential secondary functions, we took inspiration from previous research and identified the Mediator subunit 28 (MED28) as the only known member having documented nuclear and cytoplasmic dual roles, and thus possessing the potential to transmit signals from the cellular structural states to the nucleus. Due to the lack of...
Lipid Membranes at the Nanoscale: Single-Molecule Fluorescence Approach
Koukalová, Alena ; Černý, Jan (advisor) ; Malínský, Jan (referee) ; Benda, Aleš (referee)
The complexity of cell membranes is far from being only a simple assembly of lipids and proteins separating cells from the surrounding environment. Each of the thousands of different membrane components performs its specific role in cellular functions, since a multitude of biological processes is mediated by membranes. The understanding of the molecular basis of these processes is one of the important aims of current biological research. Our research employing single- molecule fluorescence methods (e.g. FCS, FCCS, FLIM-FRET) has made a contribution to the knowledge of membrane lateral organization or mechanism of membrane fusion. Furthermore, we revealed the mechanism of membrane activity of a small natural compound. As native cell membranes are very complex structures, we performed the experiments on simplified model lipid membranes that allow studying lipid-lipid or lipid-protein interactions at the molecular level in a controlled way. The first part of this thesis deals with the mode of action of a membrane active secondary metabolite didehydroroflamycoin (DDHR). We demonstrated that DDHR is a pore-forming agent and that this activity is influenced by the presence of cholesterol. Direct visualization of intrinsic fluorescence of DDHR revealed its preferential partitioning into membrane areas...
Quality control in snRNP biogenesis
Roithová, Adriana ; Staněk, David (advisor) ; Malínský, Jan (referee) ; Vomastek, Tomáš (referee)
(English) snRNPs are key components of the spliceosome. During their life, they are found in the cytoplasm and also in the nucleus, where carry out their function. There are five major snRNPs named according to RNA they contain U1, U2, U4, U5 and U6. Each snRNP consists from RNA, ring of seven Sm or LSm proteins and additional proteins specific for each snRNP. Their biogenesis starts in the nucleus, where they are transcribed. Then they are transported into the cytoplasm. During their cytoplasmic phase, the SMN complex forms the Sm ring around the specific sequence on snRNA and cap is trimethylated. These two modifications are the signals for reimport of snRNA into the nucleus, where they accumulate in the nuclear structures called Cajal bodies (CBs), where the final maturation steps occur. There are several quality control points during snRNP biogenesis that ensure that only fully assembled particles reach the spliceosome. The first checkpoint is in the nucleus immediately after the transcription, when the export complex is formed. The second checkpoint is in the cytoplasm and proofreads Sm ring assembly. If the Sm ring formation fails, the defective snRNPs are degraded in the cytoplasm by Xrn1 exonuclease. However, it is still unclear, how the cell distinguishes between normal and defective...
Localization of GABAB receptor in the mouse dorsal cochlear nucleus and auditory cortex under physiological and pathological conditions
Melichar, Adolf ; Králíková, Michaela (advisor) ; Malínský, Jan (referee)
GABAB receptors play an important role in regulation of neuronal excitability and stability of neural microcircuits. It is well known that dysregulation of slow GABAergic signalisation can lead to many pathological conditions (epilepsy, anxiety etc.). Current research indicates that the imbalance in the inhibitory transfer, caused by changes in the expression of GABABR in the auditory system could play an important role in the progression of tinnitus. The goal of the present thesis was to determine the distribution of the GABAB receptor and its auxiliary subunit KCTD12 in the mouse auditory cortex and the dorsal cochlear nucleus (DCN). Furthermore, a change in GABAB receptor localization in the DCN was observed in mice exposed to an acoustic stress. The GABAB receptor was expressed across the entire auditory cortex, both on the body and on the neuronal fibres. On the contrary, KCTD12 was found only in a particular subgroup of neurons that includes VIP (vasoactive intestinal peptide) and cholecystokinin positive interneurons., GABABR and KCTD12 protein were found in all layers and in all studied cells types (fusiform, cartwheel and stellate) of the DCN. Acoustic trauma of the WT mice resulted in GABAB receptor internalization specifically in fusiform cells that are the main projection neurons of the...
Membrane compartment of Can1 (MCC): specialized functional microdomain of the yeast plasma membrane
Doudová, Lenka ; Malínský, Jan (advisor) ; Vopálenská, Irena (referee)
Membrane compartment of Can1 (MCC): specialized functional microdomain of the yeast plasma membrane Yeast plasma membrane is divided into several different compartments. Membrane compartment of Can1 is specific for its protein and lipid composition, furthermore it creates furrow-like invaginations on the plasma membrane. These invaginations are made by multiprotein complexes called eisosomes, which are located in the cytosolic side of MCCs. It was established that this domain plays an important role in response to various environmental stresses. Sur7 and Nce102 are transmembrane MCC proteins of unknown function. Sur7 is most likely a structural protein within MCC, Nce102 is probably important in regulation of kinases associated with MCC/eisosomes. Key words: biological membrane, membrane microdomains, eisosome, S. cerevisiae, Sur7, Nce102
Influence of lipid composition and model peptides on lateral organization of lipid layers
Veľas, Lukáš ; Heřman, Petr (advisor) ; Malínský, Jan (referee)
Oxidized phospholipids (OxPLs) are known to be present in living organisms due to oxidative stress. However, the physiological function of OxPLs is still not fully understood. They have been shown to be present in many inflammatory diseases such as atherosclerosis and neurodegenerative diseases like Parkinson's and Alzheimer's disease. In this work we present the influence of two truncated OxPLs on the lateral heterogeneity of a model lipid membrane. Specifically, we studied the effect of 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3- phosphocholine (POVPC) and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC) on the formation of nanodomains present in giant unilamellar vesicles containing 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC), cholesterol and sphingomyelin. Only few techniques are capable of detecting nanometer-sized domains in the membrane with high resolution. Time resolved Förster resonance energy transfer (TR-FRET) combined with Monte Carlo (MC) simulations provide a strong tool not only to detect lateral heterogeneities but also characterize them with the resolution of 2 nm. Profound effects on the nanodomain size were observed in the presence of both studied OxPLs and differences were detected, as PGPC with a carboxylic group drives formation of larger nanodomains than POVPC...
Formation of splicing machinery in the context of the cell nucleus
Stejskalová, Eva ; Staněk, David (advisor) ; Vanáčová, Štěpánka (referee) ; Malínský, Jan (referee)
Most of the protein coding genes of higher eukaryotes contain introns which have to be removed from primary transcripts to make mRNA which can be used as a template for protein synthesis. This crucial step in the pre-mRNA processing is carried out by the spliceosome, a complex ribonucleoprotein machine formed from small ribonucleoprotein particles (snRNPs). snRNPs biogenesis is a complex process composed of several steps which take place in both the cytoplasm and the nucleus. Spliceosome assembly is highly dynamic and tightly regulated and pre-mRNA splicing depends not only on the sequence of the pre-mRNA itself but also on the nuclear context, such as the chromatin modifications. How do cells regulate where and when the spliceosome would be assembled? What determines which introns will be spliced? These are fundamental, yet unanswered, biological questions. In this work we analyzed the formation of splicing machinery in the context of the cell nucleus from several different points of view. First, we investigated the unexpected connection between splicing factor U1-70K and the survival of motor neurons (SMN) complex which is a major player in the snRNP biogenesis pathway. We revealed that U1-70K interacts with the SMN complex and that this interaction is crucial for the stability of nuclear gems, small...
Improved Methods of Image Acquisition and Analysis of Tissues and Cells by Confocal and Multi-Photon Microscopy
Chernyavskiy, Oleksandr ; Kubínová, Lucie (advisor) ; Hašek, Jiří (referee) ; Malínský, Jan (referee)
Univerzita Karlova v Praze Přírodovědecká fakulta Studijní program: Vývojová biologie (P1520) Studijní obor: Vývojová biologie (1501V000) Oleksandr Chernyavskiy Zdokonalené metody pro snímání obrazových dat a analýzu tkání a buněk pomocí konfokální a multifotonové mikroskopie Improved Methods of Image Acquisition and Analysis of Tissues and Cells by Confocal and Multi-Photon Microscopy Abstrakt disertační práce Školitel: RNDr. Lucie Kubínová CSc Praha, 2015 Abstract The aim of this study was to develop methods and approaches for image acquisition with subsequent image analysis of data, obtained by confocal and two- photon excitation microscopy as well as their combination, enabling new possibilities of visualization and assessment of information on biological tissues and cell structures in 3D and their measurement. We focused on methods that exploited advantages of confocal and multi-photon excitation microscopy. Our further aim was to demonstrate the applicability of non-invasive approach for in vivo applications, usefulness and the relevance of these methods in several special biological applications with emphasis on improved image acquisition, analysis and evaluation of real biological specimens. The present work was not oriented on just one specific biological problem, but rather to methodological...

National Repository of Grey Literature : 28 records found   previous11 - 20next  jump to record:
See also: similar author names
1 Malinský, Josef
1 Malínský, Jiří
Interested in being notified about new results for this query?
Subscribe to the RSS feed.