National Repository of Grey Literature 54 records found  beginprevious21 - 30nextend  jump to record: Search took 0.01 seconds. 
The crystal structure of PI4 kinase
Bäumlová, Adriana ; Bouřa, Evžen (advisor) ; Obšil, Tomáš (referee) ; Bařinka, Cyril (referee)
Phosphatidylinositol 4-kinases (PI4K/PI4-kinases) catalyse the production of phosphatidylinositol 4-phosphate (PtdIns4P), the first step in the generation of higher phosphoinositides. PtdIns4P is an essential precursor in the production of second messengers, Ins(1,4,5)P3 and diacylglycerol, in a receptor activated phospholipase C signalling pathway. Moreover, PtdIns4P itself regulates conserved compartment-specific biological processes, mainly via recruiting a broad spectra of effector proteins. Because PI4-kinases have a central position in PtdIns4P synthesis on a surface of intracellular membranes, they are implicated in a wide range of PtdIns4P-induced processes such as lipid transport and metabolism, intracellular trafficking processes and cargo sorting, membrane and cytoskeleton remodelling events, signal transduction and many others. In mammals, two types of PI4-kinases were identified: type II and type III. Both types do not bear high sequence similarity to each other and, therefore, they possess diverse biochemical properties. In order to elucidate their structural relationship to other lipid kinases, structural analysis is highly demanded. The structural characterisation of individual PI4-kinases could also clarify the catalytic mechanism of PtdIns4P synthesis. Furthermore, information...
Deciphering the biological role of Ddi1-like protein family
Sivá, Monika ; Grantz Šašková, Klára (advisor) ; Bařinka, Cyril (referee) ; Stopka, Pavel (referee)
Ddi1-like protein family has been recently raised into the spotlight by the scientific community due to its important roles in cellular homeostasis maintenance. It represents a specific group among shuttling proteins of the ubiquitin-proteasome system. When compared to other shuttles, Ddi1-like protein family members harbor a unique retroviral-protease like domain besides the conventional ubiquitin-like (UBL) domain and domains interacting with ubiquitin. In addition, a helical domain of Ddi (HDD) has been recently found in most of the orthologs. In this thesis, I focus on characterization of several members of Ddi1-like protein family, both on molecular level using NMR and in model mouse strains via a variety of biological methods. Solution structure of the UBL domain of Ddi1p of S. cerevisiae was solved and its characteristics were compared to those of the UBL domain of its human ortholog. Furthermore, we show that human DDI2 specifically binds to ubiquitin with its terminal domains, both the UBL and the UIM; however, with very low affinity in contrast to binding properties of its yeast counterpart. Our study also show that hDDI2 does not form a head-to-tail homodimer. Based on our structural studies, we hypothesize that human DDI2 might have evolved a different function compared to its yeast...
Structure-assisted development of a continuous carboxypeptidase assay
Rakhimbekova, Anastasia ; Bařinka, Cyril (advisor) ; Bouřa, Evžen (referee)
Glutamate carboxypeptidase II (GCPII) is a zinc-dependent carboxypeptidase with high expression levels in prostate carcinoma. As the enzyme represents a validated target for cancer therapy and imaging, the development of new GCPII-specific ligands is still a focus of an active academic and industrial research. However, existing assays to screen inhibitor libraries and determine inhibitor efficacy are suboptimal at best. This thesis is aimed at the development of small internally quenched probes that could be used for continuous measurement of the GCPII enzymatic activity. These probes are derived from natural GCPII substrates and consist of a fluorophore/quencher pair connected by a GCPII-hydrolysable linker. I first characterized biophysical properties of the probes and then determined kinetic parameters of their hydrolysis by GCPII. The optimized activity assay was then used to determine inhibition constants of several GCPII-specific inhibitors. Finally, complexes between the inactive enzyme and several probes were co-crystallized and one of the complexes refined and analyzed. Our data show that the probes are involved in non-covalent interactions with the same amino acid residues of the enzyme's active site as natural substrates. The developed assay could be optimized for high-throughput...
The use of phage display to investigate Leishmania mexicana surface antigens
Krylová, Anna ; Spitzová, Tatiana (advisor) ; Bařinka, Cyril (referee)
Leishmania is a protozoan parasite of vertebrates transmitted by the bite of infected phlebotomine sandflies. In humans, it causes a disease called leishmaniasis, which ranks as one of the most serious neglected tropical diseases. In the vectorial part of the life cycle, the crucial moment is when the flagellate forms (promastigotes) attach to the midgut epithelium of the sandfly. For most leishmania species, little is known about which types of phlebotomine receptors and leishmania surface antigens participate in the binding. Phage display was used to screen for Leishmania mexicana peptide ligands which may play a role in such binding. By affinity selection of phages incubated with promastigote cells, 16 unique peptides were identified. Fluorescent labelling of peptide-bearing phages indicated their putative binding sites on the leishmania surface. Based on the hypothesis that the identified peptides may be a part of receptors found in the phlebotomine midgut, experiments were performed where the sandflies were infected with promastigotes whose binding sites were blocked by two different peptide-bearing phages. The extent of the infection was different between the two cases. However, no statistically significant difference from the control group was observed. Despite unsuccessful attempts to identify a...
Molecular basis of interactions between Dishevelled 3 (Dvl3) and Protein Regulator Of Cytokinesis 1 (PRC1)
Kropáčková, Veronika ; Bařinka, Cyril (advisor) ; Macůrková, Marie (referee)
Scaffolding protein Disheveled (Dvl) is a key component of Wnt signaling cascades. Dvl participates in a number of biological processes, such as cell proliferation, differentiation and migration, determination of cell polarity, and also stem cell self-renewal. It is therefore indispensable for the correct embryo development and tissue homeostasis in adulthood. The protein regulator of cytokinesis (PRC1) is a microtubule-associated protein. PRC1 is involved in spindle midzone formation during cell division. Spindle midzone precedes the contractile ring assembly and is essential for normal cell cleavage. In our laboratory, PRC1 was identified as a putative interaction partner of DVL3. This master thesis is focused on delineation of the interaction interface between DVL3 and PRC1 using TIRF microscopy (Total Internal Reflection Fluorescence microscopy). To this end, full-length DVL and PRC1 proteins together with their truncated variants were designed, expressed and purified. It was discovered that PRC1 interacts with all three DVL isoforms and the N-terminal part of PRC1 is required for the interaction between PRC1 and DVL3. Furthermore, the DEP domain of DVL3 is likely involved in PRC1interactions. Key words: Dishevelled 3, DVL3, Protein regulator of cytokinesis 1, PRC1, interaction interface, TIRF...
Substrate specificity of histone deacetylases
Ustinova, Kseniya ; Bařinka, Cyril (advisor) ; Bumba, Ladislav (referee) ; Obšil, Tomáš (referee)
In the cell, tubulin undergoes post-translational modifications that create functionally distinct microtubules and mark them for specialized functions. Acetylation of Lys40 of α-tubulin is one of such post-translational modifications controlled by the activity of histone deacetylase 6 (HDAC6). The Lys40 acetylation is a hallmark of stable microtubules, it protects them from mechanical aging, influences cell motility as well as axonal branching and maintenance of neuronal processes. Tubulin stands out as the most prominent physiological substrate for HDAC6. Being a multidomain cytosolic protein, HDAC6 is involved in the myriad of cellular processes and is a promising target for the treatment of cancer and neurodegenerative diseases. The understanding of the mechanisms of HDAC6 interactions with its substrates, especially with tubulin, can open avenues for the development of new treatment strategies exploiting highly selective HDAC6 inhibitors. In this thesis, we have investigated the molecular basis of tubulin recognition by HDAC6. We provided a detailed kinetic analysis showing the HDAC6 deacetylation rate of free tubulin is 1500-fold faster than microtubules. Additionally, we have shown that amino acids of the flexible Lys40 loop (except P1 and P-1) make a minor contribution to the substrate...
Membraneless organelles in eukaryotic cells
Beránková, Pavla ; Libusová, Lenka (advisor) ; Bařinka, Cyril (referee)
Membraneless organelles (MLOs) are a newly described type of cellular compartments. They consist of protein and nucleic acid molecules that undergo liquid-liquid phase separation (LLPS). MLOs are able to fulfill unique biological roles, because they are highly dynamic and their composition can be effectively regulated. Composition and function of these formations are swiftly being elucidated. The work summarizes the basic principles of LLPS in living organisms and further focuses on several types of MLOs functionally connected to microtubules (MTs). Their recurrent feature is the ability to nucleate MTs. This eventual role corresponds well with their high temporal and spatial dynamics.
Membraneless organelles - physiological functions and experimental techniques of their study
Bašta, Miroslav ; Bařinka, Cyril (advisor) ; Humhalová, Tereza (referee)
Membraneless organelles, also called biomolecular condensates or protein droplets, are liquid spheric bodies present in an every cell compartment. Their composition and density is only slightly different from their surroundings. They consist of hundreds of types of proteins and nucleic acids and they are responsible for various biological functions. They are formed via liquid-liquid phase separation that creates a phase boundary in a solution of macromolecules in order to decrease the low free energy of the system. This process is initiated by external stress, internal cell processes or mutations in DNA. There are many identified types of membraneless organelles and each year there are more added on the list. Their functions include localization of macromolecules and related biochemical reactions, tuning of biochemical reactions and transport of macromolecules throughout the cell. This thesis presents a brief summary of the topic of membraneless organelles with several specific examples and very briefly describes several selected methods of their study.
Investigation and inhibition of α-synuclein aggregation
Afitska, Kseniia ; Yushchenko, Dmytro (advisor) ; Žídek, Lukáš (referee) ; Bařinka, Cyril (referee)
α-Synuclein (AS) is a small intrinsically disordered protein expressed in neurons and abundantly present in synapses where it is involved in regulation of synaptic vesicle-mediated protein trafficking. Misfolding of AS into amyloid fibrils is a key process in progression of Parkinson's disease (PD), the second most common neurodegenerative disorder which has no cure to date. Inhibition of AS aggregation and blocking of cell-to-cell spreading of AS fibrils is a promising strategy for PD treatment. However, rational design of inhibitors of this type remains complicated due to the lack of thorough knowledge about the mechanisms of aggregation. Therefore, the aim of this thesis was to gain deeper knowledge about AS aggregation and to apply it for developing inhibitors of AS fibrillization. In my work on the mechanisms of AS aggregation, I first determined that the concentration of AS that enables the fibril growth is an order of magnitude lower than the concentration of AS required for initial fibril formation from monomers. I explored fibril disaggregation at AS concentrations below its Kd value, and characterized AS aggregation at low micromolar concentrations. I then investigated how different modifications of AS C-terminus (namely, extensions of various sizes and charges) affect fibril growth and...
Rhomboid family intramembrane proteases in prokaryotes: mechanism, substrate repertoires and biological functions in the Gram-positive bacterium Bacillus subtilis.
Began, Jakub ; Stříšovský, Kvido (advisor) ; Bařinka, Cyril (referee) ; Krásný, Libor (referee)
Rhomboid proteases are a class of serine intramembrane proteases, a large family of enzymes that catalyze the proteolytic cleavage of membrane proteins within their transmembrane regions, in the hydrophobic environment of cellular lipid membranes. Rhomboid proteases were discovered in 2001 in Drosophila. In their pioneering study, Lee et al. identified the essential role of Rhomboid-1 protein (Rhom-1), which proteolytically activates the epidermal growth factor (EGF) receptor signaling pathway, in the early stages of fly eye development. Members of the rhomboid superfamily - active proteases (rhomboids) as well as their catalytically-dead counterparts (rhomboid-like proteins, including iRhoms and Derlins) - are widely conserved, implying their biological significance. Rhomboids are present in all kingdoms of life from archea to humans, while proteolytically inactive rhomboid-like proteins are present in eukaryotes only. Rhomboid superfamily proteins play roles in a wide range of processes, as diverse as signaling in metazoan development, mitochondrial biogenesis in yeast, host- cell invasion by protozoan parasites, protein quality control in the endoplasmic reticulum (ER) or bacterial quorum sensing. Rhomboids are the best understood intramembrane proteases from a structural and mechanistic points...

National Repository of Grey Literature : 54 records found   beginprevious21 - 30nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.