National Repository of Grey Literature 333 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Characterization of bacterial strains obtained in evolutionary engineering
Hrabalová, Vendula ; Sedláček, Petr (referee) ; Obruča, Stanislav (advisor)
This diploma thesis deals with application of evolutionary engineering on PHA producing bacterial strains. Two bacterial strains, Cupriavidus necator H16 and Halomonas halophila, were chosen for the evolutionary experiments. Copper cations (Cu2+) and sodium chloride (NaCl) were chosen as the selective pressure for C. necator H16; acetic acid (AA) and levulinic acid (LA) for Halomonas halophila. The adapted strains were during long-time evolutionary experiments characterized by GC-FID and SEC-MALS. The growth of the adapted strains was studied by the mean of optical density measurement. The amount of viable cells was determined by spectral FC after their expositon to selected stress factors. Specific enzyme activities of enzymes involved in citrate and glyoxalate cycle, enzymes generating NADPH, LA metabolism enzyme and PHA biosynthesis enzymes were determined. The adapted strains were compared with the wild-type of strains. The successfull adaptation of C. necator H16 adapted to Cu2+ was detected. Biomass and PHA production of both wild and adapted H. halophila strains cultivated in lignocellulosis waste were determined. It was found out that H. halophila adapted to the LA is capable of producing more PHA than the wild strain of this bacteria.
Microrheology with Fluorescence Correlation Spectroscopy
Kábrtová, Petra ; Sedláček, Petr (referee) ; Mondek, Jakub (advisor)
A comparison of three passive microrheological techniques was made with the emphasis on FCS. Fluorescently labelled and unlabelled polystyrene particles were used to probe a microrheological response of glycerol solutions, Mili-Q water and sodium hyaluronate solutions. In addition, for FCS technique an approximated equation for calculation of MSD values was derived and verified. It was found that FCS outmatches current microrheological techniques of DLS and video-based particle tracking by its ability to gain a broader data range including the area in which, until now, it was impossible to describe a microrheological behaviour of samples reliably.
Application of microencapsulation techniques in development of novel controlled-release systems.
Karásková, Iva ; Mravec, Filip (referee) ; Sedláček, Petr (advisor)
This diploma thesis deals with application of microencapsulation techniques in development of hydrogel controlled-release systems in which the main role is played by humic acids, biopolymer chitosan, compound fertilizer NPK and 3-indoleacetic acid. This paper continues my bachelor thesis topic about utilization of polyelectrolyte complexes. The aim of this work was to develop a literature review focusing on the microencapsulation techniques and according to its results optimize the method. Microencapsulation was performed with a commercial encapsulator BUSCHI B-395 Pro and a release of individual components into a water was measured. An amout of released substances was measured by UV-VIS method and HPLC analysis. Practical part also included testing of repeated swelling and drying. It was found that suitable composition and combination of ingredients form hydrogels for further use in agriculture.
Reactivity-mapping studies on biopolymers in hydrogel forms
Smilek, Jiří ; Kislinger, Jiří (referee) ; Sedláček, Petr (advisor)
The diploma thesis is focused on the study of interactions between biopolymers and model probes in a hydrogel media utilizing diffusion processes. The main aim was to test and to optimize selected combination of diffusion methods (diffusion cells and unsteady diffusion) in study of interactions between biopolymers and organic dyes. Anionic (humic acids) and cationic (chitosan) representatives of biopolymers were utilized and methylene blue and methylene orange were used as a reactivity probe in the case of humic acids and chitosan, respectively. Another appreciable part of the work is represented by in-depth characterization of applied biopolymers and hydrogel samples by a wide range of analytical and physico-chemical methods (rheometry, UV-VIS, FT-IR etc.). Besides particular experimental results on studied systems, the diploma thesis provides both theoretical and practical background for subsequent applications of the innovative and full-automated method for reactivity mapping of biopolymers.
Microrheology modeling with COMSOL Multiphysics package
Koláček, Jakub ; Sedláček, Petr (referee) ; Pekař, Miloslav (advisor)
This bachelor thesis focuses on modeling Brownian motion using the COMSOL Multiphysics package and its Particle Tracing module. The aim of the work is to design and create elementary models that will be able to suitably simulate the movement of microparticles in viscous and viscoelastic environments, which can later be used for modeling passive microrheology. Within this work, Matlab scripts were created for the calculation of MSD from the simulation results, validation of the viscous model was performed on experimental data and elementary models for the simulation of the viscoelastic environment were also designed. Two different approaches were chosen for the design of these models, namely the use of rigid obstacles under the assumption of a discrete environment and a mathematical model assuming continuous environment. Data from the viscous model showed good agreement with the experimental results. The results of viscoelastic simulations are presented, and further possible development of these models is discussed. The continuous mathematical model is considered closest to modeling viscoelastic behavior because of a characteristic curvature that was observed in the evaluation of MSD.
Preparation of humic hydrogels with incorporated metal ions
Palková, Michaela ; Kislinger, Jiří (referee) ; Sedláček, Petr (advisor)
This bachelor’s thesis deals with the study of interaction of cupric ions as a model heavy metal with humic-substances in a hydrogel form. Main objective of the work was to suggest and optimize methods of preparing hydrogel forms of humic acids with the cupric ions and to study the influence of the ions on the properties of the prepared hydrogels while using analytical and physic-chemical methods. The investigated parameters for the characterization of prepared hydrogels were inner pH of the hydrogels and the pH of the solution at different stages of preparation, the quantity of copper ions in the hydrogels, the possibility of extraction and characterization of the structure of resulting hydrogel forms. The experimental results have conformed the expected influence of metal contact in the hydrogel forms of humic substances
Hybrid module for industrial localization
Sedláček, Petr ; Fuchs, Michal (referee) ; Kubíček, Michal (advisor)
Tato diplomová práce si klade za cíl návrh hybridního lokalizačního zařízení, které je schopno lokalizace uvnitř i vně budov. Lokalizace uvnitř budov je dosažena pomocí technologie Ultra Wideband a venkovní lokalizace je provedena pomocí kombinace technologie RTK GNSS a PPP pomocí open - source softwaru zvaného RTKLIB. První část textu se zaměřuje na vysvětlení používaných technologií a výběr nejpřesnější technologie pro venkovní lokalizaci. Druhá část se zaměřuje ma vývoj potřebného hardware a software finálního zařízení a na integraci systému pro venkovní lokalizaci do systému pro lokalizaci vnitřní. Výstupem práce je plně funkční zařízení, které je schopné plynulé lokalizace uvnitř i vně budov. Funčnost celého zařízení je dokázána na finálních testech uskutečněných ve vnitřních i venkovních prostorách. Na závěr také práce zmiňuje možná vylepšení celého zařízení, která mohou být v budoucnu provedena.
Hyaluronan effect on transdermal penetration of selected pharmaceutical substances
Ureš, Tomáš ; Sedláček, Petr (referee) ; Pekař, Miloslav (advisor)
This work deals with the transmittance of a family of non-steroidal anti-inflammatory drugs across biological membranes in combination with the use of hyaluronan. Hyaluronic acid (hyaluronan, HYA) is a linear polysaccharide formed from disacharide units containing N-acetyl-D-glucosamine and glucuronic acid. HYA is present in almost all biological fluids and tissues, so there is an assumption that could affect the penetration of substances through the skin. Standards were prepared by anti-inflammatory drugs in admixture with various concentrations hyaluronan and subsequently measured transmittance of such substances through the skin. Standards were applied to the skin obtained from pig auricle. The drug content was determined by HPLC.
Involvement of polyhydroxyalkanoates in stress response of bacteria during late stationary phase
Šuráňová, Zuzana ; Sedláček, Petr (referee) ; Obruča, Stanislav (advisor)
The aim of this work was to study the involvement of polyhydroxyalkanoates into stress response of bacteria in the late stationary phase. Bacteria Cupriavidus necator H16 (able to produce PHA) and bacteria Cupriavidus necator H16/PHB-4 (unable to produce PHA) were used for the experiment. In the theoretical part, the polyhydroxyalkanoates and a stress response of bacteria were reviewed. In the experimental part of the work, the involvement of polyhydroxyalkanoates into stress response of bacteria in the late stationary phase against selected stress factors was studied. A resistence against various stress conditions of bacteria was studied. During long term cultivations a culture viability as well as PHA distribution among bacterial populations were assessed by using flow cytometry and the PHA content in biomass was analyzed by gas chromatography with FID detector.. Based on the results obtained in this work, it was found that the PHA acumulating bacteria Cupriavidus necator H16 is capable to survive carbon substrate limitations better than the bacteria Cupriavidus necator H16/PHB. Further, Cupriavidus necator H16 also revealed higher resistence against various stress factors such as ethanol treatment and freezing.
Study on the transport of humic acids through the plant cuticles
Smilková, Marcela ; Záhora, Jaroslav (referee) ; Sedláček, Petr (advisor)
This diploma thesis is focused on foliar fertilization. It is nowadays one of the most widespread types of application of commercial fertilizers. Concern of this thesis is the study of plant cuticles as a thin layer on the leaves. These thin membranes are responsible for regulation of water transport and nutrients. Further function of plant cuticles is the mechanical protection of the outer part of the plant. Plant cuticles were characterized by fluorescence spectroscopy, classical optical microscopy and profilometry. The main aim of this thesis is the optimization and verification of experimental methodology aimed to the transport of commercial humic product through plant cuticles by simple diffusion techniques. The results obtained by presented diffusion techniques of humic product through plant cuticles were correlated with the same diffusion experiments through synthetic membranes with defined pore size and density. The study on transport of commercial humic product was realized in hydrogel medium by two different diffusion methods – non-stationary diffusion technique and diffusion couple. The important part of this diploma thesis is the characterization of supported hydrogel matrix by rheology tests, mercury intrusion porosimetry and scanned electron microscopy. Conclusions of this diploma thesis could be used for improving of efficiency of foliar fertilization.

National Repository of Grey Literature : 333 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.