Národní úložiště šedé literatury Nalezeno 60 záznamů.  začátekpředchozí51 - 60  přejít na záznam: Hledání trvalo 0.01 vteřin. 
Optická rotace a manipulace s nesférickými mikroobjekty
Arzola, Alejandro V. ; Chvátal, Lukáš ; Šerý, Mojmír ; Jákl, Petr ; Brzobohatý, Oto ; Šiler, Martin ; Zemánek, Pavel
Manipulace s mikroskopickými objekty světlem umožnily hlouběji pochopit interakce záření s hmotou a rovněž našly řadu jedinečných aplikací v mikrosvětě. Standardní optická pinzeta je patrně nejznámější příklad, který k zachycení mikroobjektů využívá silně fokusovaného laserového svazku. Využití prostorového fázového modulátoru světla k tvarování rozložení optické intenzity v chytacím svazku nabízí možnost optimalizovat silové působení s ohledem na velikost, tvar a počet částic.
Classical and advanced methods of optical micromanipulations and their applications
Zemánek, Pavel ; Brzobohatý, Oto ; Šiler, Martin ; Karásek, Vítězslav ; Samek, Ota ; Jákl, Petr ; Šerý, Mojmír ; Ježek, Jan
Optical micro-manipulation techniques have been using for more than 30 years to transfer the momentum from light to microparticles or nanoparticles and influence their movement in liquid, on the surface, or in the air. These days such techniques become more developed and frequently used in physics, chemistry and biology to manipulate, trap, rotate, or sort various types of objects, including living cells in a contactless and gentle way.
Multiple Probe Photonic Force Microscopy
Jákl, Petr ; Šerý, Mojmír ; Zemánek, Pavel
Single beam optical trap (also known as optical tweezers) is created by a laser beam that is tightly focused by microscope objective with high numerical aperture. A dielectric particle in water medium is then dragged by optical forces to place of the highest optical intensity, i.e. to the laser beam focus. Photonic force microscopy (PFM) is a technique that utilizes optical tweezers for confining the local probe, usually a dielectric particle of a sub-micron diameter. I.e. PFM belongs to the of large family of scanning probe microscopy (SPM) techniques. We have used fluorescently labeled polymer sphere in order to conveniently measure the distance between the particle center and the focal point of the laser beam. To make the measurement more precise, we have measured two-photon-fluorescence, which is quickly decreasing with the probe-focus distance.
Optická pinzeta a její využití
Šerý, Mojmír ; Ježek, Jan ; Jákl, Petr ; Jonáš, Alexandr ; Zemánek, Pavel
Optická pinzeta je velmi populární nástroj ve mnoha oblastech zkoumání, jmenovitě v medicíně biologii a fyzice. Tento mikormanipulační nástroj je bezkontaktní, sterilní a může být použit jako citlivý silový senzor.
Optické třídění mikročástic
Jákl, Petr ; Šiler, Martin ; Zemánek, Pavel
Prezentovali jsme trideni mikrocastic ruznych vlastnosti optickymi silami. Pro separaci zivych ci nezivych mikroobjektu ruznych tvaru a velikosti jsme pouzili jak staticke tak dynamicke interferencni struktury.
Pokročilé techniky optických mikromanipulací
Zemánek, Pavel ; Čižmár, Tomáš ; Šiler, Martin ; Jákl, Petr ; Šerý, Mojmír ; Karásek, Vítězslav ; Brzobohatý, Oto
Dnes již klasický nástroj optických mikromanipulací – optická pinzeta, našla řadu aplikací ve fyzice, biologii a chemii. Nicméně byly vyvinuty nové techniky, které využívají sofistikovanějšího tvarování laserových svazků a umožňují dynamicky měnit počet a polohu manipulovaných mikroobjektů, opticky třídit objekty podle jejich vlastností, doručovat je na milimetrové vzdálenosti nebo dokonce nechat je samoorganizovat po osvícení světlem. Uvádíme několik výsledků z výše zmíněných pokročilých metod vyvinutých v naší laboratoři.
Measurement of the Optical Trap Stiffness
Jákl, Petr ; Jonáš, Alexandr ; Zemánek, Pavel ; Liška, M.
An optical trap for dielectric microparticles is usually approximated by a parabolic potential well, whose profile is characterized by a single constant - trap stiffness. This stiffness can be estimated using several methods, including Fourier spectral analysis of the thermal noise of the trapped particle position, or method based on equipartition theorem. The principles of the trap calibration and experimental results are presented.
Measurement of Intensity Profile in the Focal Region of Microscope Objective
Šerý, Mojmír ; Ježek, Jan ; Jákl, Petr ; Jonáš, Alexandr ; Zemánek, Pavel ; Liška, M.
This work describes an experimental method for the measurement of the profile of the laser beam focused by an immersion microscope objective. The method makes use of the two-photon excited fluorescence emitted by a 200 nm dyed polystyrene bead fixed to the cover slip. A piezo driven stage is used for scanning of the bead through the focal volume of an infrared laser beam and the excited two-photon fluorescence is detected by a photomultiplier.

Národní úložiště šedé literatury : Nalezeno 60 záznamů.   začátekpředchozí51 - 60  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.