National Repository of Grey Literature 198 records found  beginprevious86 - 95nextend  jump to record: Search took 0.02 seconds. 
CRISPR/Cas9 editing of leukemic B-cells: searching for microRNA-155 targets involved in the process of leukemogenesis
Sypecká, Markéta ; Savvulidi Vargová, Karina (advisor) ; Mráz, Marek (referee)
Markéta Sypecká CRISPR/Cas9 editing of leukemic B-cells: searching for microRNA-155 targets involved in the process of leukemogenesis Introduction: Chronic lymphocytic leukemia (chronic lymphoid leukemia, CLL) is a monoclonal disorder characterized by a progressive accumulation of functionally incompetent lymphocytes. CLL is the most common form of leukemia found in adults in Western countries. Course of the disease can differ: some patients die rapidly, within 2-3 years of diagnosis, because of complications from CLL, but most patients live 5-10 years. However, every stage of this disease has significantly higher level of miR-155, which is known as oncomiR. Micro RNAs represent negative regulators of gene expression. MiR-155 affects genes, which are involved in leukemogenesis and cell cycle. And it is known, that miR-155 suppresses its targets. We hypothesized that by gene editing of CLL B - cells we unblock miR-155 targets and find out correlation between these targets (known and unknown) with CLL leukemogenesis. Method we use for gene editing is CRISPR/Cas9, which enables to delete sequence of mature miR-155 in genome of leukemic B-cells. Methods: CRISPR/Cas9, nucleofection, qRT-PCR, FACS Results:We achieved to isolate clone that bears one allelic deletion (miR-155-/+) in sequence for mature...
Factors affecting gene expression in Bacillus subtilis
Sudzinová, Petra ; Krásný, Libor (advisor) ; Vopálenský, Václav (referee) ; Vohradský, Jiří (referee)
Bacterial DNA-dependent RNA polymerase (RNAP) is a key enzyme of bacterial transcription. Its activity must be tightly regulated. This could be done on the level of promoter DNA topology recognition, by changing the intracellular levels of metabolites, or by binding proteins, known as transcription factors. Even though the RNAP regulatory network has been intensively studied for decades, new regulators are still being described. The main focus of this Thesis is to characterize some of them: i) HelD, a novel RNAP interacting factor, with so far unknown protein 3D structure; ii) RNase J1, an enzyme with a unique mechanism of functioning; iii) Spx, a major regulator of gene expression in Bacillus subtilis, with still new roles to be defined and iv) the effect of the topological state of promoters on transcription. We identified HelD as an interacting protein of RNAP in Bacillus subtilis and described its biochemical properties. It stimulates transcription in an ATP-dependent manner, by enhancing recycling of RNAP molecules (Publication I). We published the first insight into the HelD structure by SAXS (small angle X-ray scattering) and deepened the understanding of HelD domain composition (Publication III). And finally, we were able to solve the cryo-EM structure of HelD:RNAP complexes from...
Interaction of the human pathogen Bordetella pertussis with blood serum
Štipl, Daniel ; Večerek, Branislav (advisor) ; Kamanová, Jana (referee)
Bordetella pertussis is a Gram-negative strictly human pathogen and the major causative agent of whooping cough or pertussis. The incidence of this highly contagious respiratory disease in developed countries has increased in the last decades. One of the less characterized virulence factors of B. pertussis is the type three secretion system (TTSS) which is responsible for the secretion of the effector proteins into host eukaryotic cells. This diploma thesis sheds light onto factors influencing TTSS in vitro activity. Although TTSS of laboratory strain Tohama I was induced by biologically active compounds present in blood (e. g. complement proteins), TTSS of recent clinical isolate B1917 seems to be induced permanently. Furthermore, BB0302 encoding a GntR family transcription regulator in B. bronchiseptica RB50 (homologous to BP0209 of Tohama I) was studied, however, the deletion of this gene did not affect the TTSS functionality. Serum resistance is a factor that plays a key role in the pathogenesis of B pertussis. We show that Czech recent isolates (2008-2015) are significantly more resistant to serum killing in vitro than the original vaccine strains (1954-1965). This phenomenon seems to result from the adaptation of global B. pertussis population to its human host. In addition, this diploma...
Virulence factors of the Trichophyton benhamiae complex
Machová, Lenka ; Čmoková, Adéla (advisor) ; Labuda, Roman (referee)
Dermatophytes are a group of fungi, some of which can cause skin diseases in humans and animals due to their ability to degrade keratinized tissue. Representatives of this group also include strains from the Trichophyton benhamiae complex, known to cause dermatophytosis especially of small rodents and rabbits. In the last decade, one of four populations of this complex has spread epidemically across Europe among guinea pigs and their breeders. To answer the question what stands behind the successful spread of this population, the gene expression and production of volatile organic compounds of epidemic and non-epidemic populations of T. benhamiae was investigated. Gene expression of three strains from each population was studied during growth in liquid medium and on ex vivo mouse skin models prepared according to a newly optimized protocol. RNAseq and RT-qPCR methods were chosen for the gene expression analysis. Based on the literature and the results of RNAseq preliminary analysis, several genes were selected for which specific primers were designed. The spectra of the produced volatile organic compounds of the same strains growing on sheep wool in vials were analyzed by GC-MS. While non-epidemic populations did not differ in gene expression and production of volatile organic compounds, the...
Analysis of functional interactions of phospholipids in the cell nucleus.
Biddle, Veronika ; Hozák, Pavel (advisor) ; Kaňka, Jiří (referee) ; Malínský, Jan (referee)
(English) Phosphoinositides (PIs) are glycerophospholipids with a negative charge. As components of cell membranes, PIs are involved in membrane and cytoskeletal dynamics, cell movement and signalling, and the modulation of ion channels and transporters. Apart from the cytoplasm, phosphoinositides also localise to the cell nucleus. PIs play a role in crucial nuclear processes, such as DNA transcription, pre-rRNA and pre-mRNA processing, cell differentiation, DNA damage response, or apoptosis. Phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) are the most abundant phosphoinositides in the cell. However, their exact localisation and function in the nucleus are largely unknown. Here, we describe their localisation at super-resolution level and their involvement in some nuclear processes. PI(4)P is present in nuclear lamina, nuclear speckles and nucleoli, and it forms small foci in nucleoplasm. The majority of nuclear PI(4)P localises to the nucleoplasm, whereas almost 16 % is present in nuclear speckles. On the other hand, the majority of nuclear PI(4,5)P2 localises to nuclear speckles, almost 30 % localises to nucleoplasm and the lesser portion to nucleoli. In the nucleoplasm, PI(4,5)P2 forms small foci called nuclear lipid islets (NLIs). Their core is...
Adaptive evolution of Toll-like receptors in birds
Velová, Hana ; Vinkler, Michal (advisor) ; Elleder, Daniel (referee) ; Novák, Karel (referee)
Adaptive evolution of Toll-like receptors in birds Hana Velová, PhD thesis 6 Abstract Toll-like receptors (TLRs) are one of the key and presumably also evolutionary most original components of animal immune system. As Pattern recognition receptors they form the first line of innate immune defence against various pathogens. The proper receptor binding of pathogenic ligands is crucial for their correct recognition and for subsequent triggering of an appropriate immune response. Because there exists a direct interaction between the receptor surface and the pathogenic ligand, host-pathogen coevolution on molecular level can be predicted. Thus, through variability of their ligands, TLRs are exposed to extensive selective pressures that may be detected on both genetic and protein levels. Surprisingly, the variability we revealed in birds is even higher than previously expected based on the reports from other vertebrates, mainly mammals. In my doctoral thesis I summarise the results of my contribution to the avian TLR research. We were the first who experimentally verify the absence of functional TLR5 in several avian species and duplication of TLR7 in others. We finally resolved the origin of duplication in TLR1 and in TLR2 family. An important part of my research project focused on the prediction of potentially...
The effect of synthetic modified mRNAs induced proliferation on pancreatic beta cells
Veľasová, Adriana ; Koblas, Tomáš (advisor) ; Bořek Dohalská, Lucie (referee)
Diabetes mellitus is a chronic disease caused by the loss of pancreatic beta cells due to autoimmune destruction or increased apoptosis. Beta-cell deficiency results in reduced insulin production, which plays an important role in glucose metabolism. The number of beta-cells in the body is one of the main factors that influence the development of this chronic disease. Therefore, it is necessary to find a way by which the number of beta-cells of the organism can be increased and thus the insulin production can be restored in a natural way without any need for the use of insulin infusions. However, the ability of beta-cells to divide decreases with age and is virtually nil in adulthood. The study of the cell cycle, especially the early and late cyclins and cyclin-dependent kinases, which act as cell cycle regulators, thus appears to be a promising way to restore natural insulin-producing tissues. In order to increase the number of beta cells entering the cell cycle, we focused on studying the effect of in vitro transcribed (IVT) mRNAs, encoding cyclins type D and cyclin dependent kinases 4 and 6 on stimulating cell division of isolated beta-cells. We found that transfection IVT mRNAs for type D cyclins in combination with cyclin-dependent kinases 4 and 6 significantly increased the proliferation of beta-cells...
Machine learning models for quantifying phenotypic signatures of cancer cells based on transcriptomic and epigenomic data
Koban, Martin ; PhD, Florian Halbritter, (referee) ; Mehnen, Lars (advisor)
S rozvojom techník pre efektívnu akvizíciu genomických dát sa jednou z kľúčových vedeckých výziev stala interpretácia výsledkov týchto experimentov v zmysluplnom biologickom kontexte. Táto práca sa zameriava na využitie informácií ukrytých v dobre charakterizovaných transkriptomických a epigenomických dátach z verejne dostupných zdrojov pre účely takejto interpretácie. Najskôr je vytvorený integrovaný súbor dát generovaných metódami DNase-seq a ATAC-seq, ktoré kvantifikujú chromatínovú dostupnosť. Tieto údaje sú doplnené verejne dostupnými výsledkami techniky RNA-seq pre kvantitatívne hodnotenie génovej expresie a vhodne predspracované pre ďalšiu analýzu. Pripravené dáta sú následne použité na trénovanie modelov strojového učenia (klasifikátorov) s dvomi základnými cieľmi. Po prvé za účelom augmentácie metadát prislúchajúcich k jednotlivým biologickým vzorkám v trénovacom dátovom súbore pomocou predikcie nedefinovaných anotácií. Po druhé pre anotáciu zle charakterizovaných testovacích dát (nepoužitých v trénovacej fáze) za účelom overenia generalizačnej schopnosti zostavených modelov. Dosiahnuté výsledky ukazujú, že natrénované klasifikátory sú schopné zachytiť biologicky relevantné informácie, zatiaľ čo vplyv technických artefaktov je minimalizovaný. Navrhnutý prístup je preto schopný prispieť k lepšiemu pochopeniu komplexných transkriptomických a epigenomických dát, predovšetkým v oblasti onkologického výskumu.
Studying of Gene Expression Involved in Hyaluronic Acid Synthesis in Streptococcus Equi Subsp. Zooepidemicus Using DNA Microarrays and Real-Time PCR
Hrudíková, Radka ; Šeda,, Ondřej (referee) ; Bobek,, Jan (referee) ; Velebný, Vladimír (advisor)
Hyaluronic acid (HA) is an important substance, which is mostly used in pharmaceutical and cosmetic industry. This substance is commonly found in the human body. HA is one of the factors contributing to virulence of microorganisms. Some bacterial strains produce hyaluronic acid in the form of a mucoid capsule that encapsulates the cell to protect bacteria against the immune system of the host organism. One of the main producers is the bacterial strain Streptococcus equi subsp. zooepidemicus. Contipro a.s. uses the strain CO4A to produce hyaluronic acid in large scale. The production strain was obtained by random mutagenesis by UV light. The aim of the work was to study changes in the genome, which led to a significant increase in hyaluronic acid production, using DNA microarray and real-time PCR (qPCR). The genome of the strain CO4A was sequenced and compared to reference ATCC35246 [1]. The size of the genome is 2,167,251 bp and 83 relevant variants (59 SNV and 34 indels) have been identified. Variants in coding regions were annotated and amino acid sequence changes were determined. In SNV mutations there was a change in the amino acid sequence in 45 cases. The change was identified in every case of indel mutations. The expression level of selected groups of genes was monitored in both strains by the method of DNA microarrays. A cascade of increased expression level of amino sugar metabolism genes leading to the synthesis of UDP-N-acetyl glucosamine was observed in strain CO4A (the increase in expression level of these genes compared to ATCC35246 was on average 28 %). Subsequently, the expression of selected genes was verified by qPCR. There was no significant difference in the expression level of the has operon genes of both strains. The effect of supplementation of the culture medium with N-acetylglucosamine (GlcNAc), which is one of the precursors of HA synthesis, was also studied by qPCR. A positive effect of the supplementation of the culture medium with external GlcNAc in the CO4A strain has been recorded. Also, the supplementation has positive effect on the yield of HA from the medium (increase in yield was on average by 17 %). GlcNAc has been shown to have a positive effect on the yield of HA in ATCC35246 strain as well (increase in yield was 9 % on average), but no significant changes in the expression levels were found in selected groups of genes in ATCC35246.
The effect of the environment on bacterial DNA topology and gene expression.
Mikesková, Klára ; Krásný, Libor (advisor) ; Večerek, Branislav (referee)
Biological processes in the cell are affected by DNA topology, i. e. by DNA structure and shape. An important topological parameter is the level of supercoiling - additional twisting of DNA is relieved by positive (twisting in the same direction as the helix turns) or negative (twisting in the opposite direction) supercoils. In this Thesis I review the role of supercoiling in gene expression regulation. I describe how supercoiling is involved in homeostatic mechanisms that control the transcriptional output from some genes. Environmental changes such as shifts in temperature, oxidative stress, extreme pH and antibiotics and other inhibitors affect the level of DNA supercoiling. DNA supercoiling then affects the expression of enzymes, which influence DNA topology, as well as some other genes/proteins. In summary, this Thesis describes how changes in the environment influence bacterial DNA topology and gene expression with a brief mention of this type of regulation in eukaryotes.

National Repository of Grey Literature : 198 records found   beginprevious86 - 95nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.