National Repository of Grey Literature 66 records found  beginprevious54 - 63next  jump to record: Search took 0.01 seconds. 
High-entropy alloys – bulk alloys and surface treatments
Pišek, David ; Šiška, Filip (referee) ; Hadraba, Hynek (advisor)
Master‘s thesis deals with the preparation and evaluation single-phase high-entropy alloy based on cobalt, chromium, iron, nickel and manganese and its variants strengthened by dispersion of oxidic particles. High-entropy alloy was prepared in powder form by mechanical alloying from the equiatomic proportions of atomic powders. Obtained powder was subsequently compacted by spark plasma sintering. By the method of mechanical alloying were successfully prepared single-phase high-entropy alloy and its variant strengthened by dispersion of nanometric yttria oxides. It has been found that the oxide particles present in the microstructure of high-entropy alloy significantly block mobility of grain boundary and dislocation at elevated temperatures. As a result of this behavior were observed doubling of alloy strength and decreasing of creep rate at 800 °C.
SPARK PLASMA SINTERING OF BALL MILLED AND ATOMIZED POWDER BASED ON Fe-Al
Šíma, V. ; Minárik, P. ; Chráska, Tomáš
High-quality compacts were prepared using the spark plasma sintering (SPS) method from powders of similar composition Fe-Al-Zr-B. The properties of the sintered compacts are strongly dependent on the morphology and properties of the feedstock powder. The first powder was obtained by ball milling of the as cast alloy and the second was prepared by atomization under argon atmosphere. The morphology and structure of the two powders are compared and mechanical properties and microstructure of compacts prepared under the same conditions of the SPS procedure are discussed. The milled powder has an irregular morphology and shape of the polycrystalline particles, which have a completely disordered BCC structure with considerable internal stresses, high concentration of structural defects and the presence of aluminum oxide. The atomized powder particles are nearly spherical, polycrystalline with ordered B2 structure, with no significant signs of internal stresses and oxidation. Microhardness of particles of both powders was measured and compared with the microhardness of compact materials, the results of compression tests of compacts at room temperature were compared and discussed.
THE INVESTIGATION OF AN Al7075 ALLOY PREPARED BY SPARK PLASMA SINTERING OF MILLED POWDERS
Molnárová, O. ; Málek, P. ; Nemeth, G. ; Kozlík, J. ; Lukáč, František ; Chráska, Tomáš ; Cinert, Jakub
Atomized powder of an Al7075 alloy was high energy ball milled at room and cryogenic temperatures and compacted by spark plasma sintering (SPS) method. The influence of processing parameters on phase composition and microstructure was studied by X-ray diffraction, light and scanning electron microscopy. The mechanical properties were characterized by microhardness measurements. The atomized powder contained a large volume fraction of intermetallic phases located predominantly in continuous layers separating cells or dendrites in the interior of individual powder particles. Consolidation by SPS destroyed partially this morphology and replaced it by individual particles located at boundaries of original powder particles, at cell boundaries or arranged in chains in previous dendritic regions. High energy milling destroyed most intermetallic particles and enriched the matrix by solute atoms. The high deformation energy introduced into the powder during milling enhanced microhardness up to 220 HV. Consolidation of milled powders by SPS led to the formation of very fine-grained structure with the grain size even below 1 μm and with the fraction of high-angle boundaries about 0.9. Two main types of heterogeneously distributed precipitates were found. The irregularly shaped precipitates with a size about 1 μm seemed to encompass areas with rod like nano-precipitates in most samples. A drop in microhardness to 118HV was observed after SPS, predominantly due to a release of introduced deformation energy.
Processing of bulk SiC ceramics by advanced sintering methods
Poczklán, Ladislav ; Pouchlý, Václav (referee) ; Kachlík, Martin (advisor)
In this bachelor's thesis literature search of preparation of advanced ceramic materi-als was made. The influence of pressure, temperature and time on final microstruc-ture of non-oxide SiC ceramics was studied. The experimental part was devoted to processing of bulk SiC ceramics especially by spark plasma sintering.
Microstructure study of SPS compacted metallic binary materials
Mikuš, Tomáš ; Moravčík, Igor (referee) ; Jan, Vít (advisor)
Bachelor’s thesis deals iron aluminides and solid solutions Fe-Cu. In literature analysis are intermetallic materials and their use. Fe-Cu solutions, powder metallurgy, SPS technique and diffusion. In experimental part was used specimens made by SPS to structure and thermic analysis.
Ternary shape memory alloys fabrication by compactation of mechanically alloyed powder feedstocks
Seidl, Samuel ; Australie, Dr Ang Siao Ming, Swinburne University of Technology, (referee) ; Čížek, Jan (advisor)
Predmetom tejto práce je funkcia a použitie zliatiny s tvarovou pamäťou na báze Cu Al Ni. Ďalej sú skúmané rôzne prístupy vo výrobe týchto zliatín, konkrétne prášková metalurgia a kompaktačné procesy ako spekanie výbojom plazmy a tepelné spracovanie pripravených surových výliskov. Tieto metódy boli taktiež skúmané formou experimentu a výsledky vyhodnotené.
Design of nuclear ceramic materials with enhanced thermal conductivity
Roleček, Jakub ; Katovský, Karel (referee) ; Salamon, David (advisor)
Oxid uraničitý (UO2) je v současnosti nejčastěji používaným materiálem jakožto palivo v komerčních jaderných reaktorech. Největší nevýhodou UO2 je jeho velmi nízká tepelná vodivost, a protože se při štěpení UO2 v jaderném reaktoru vytváří velké množství tepla, vzniká v UO2 peletě velký teplotní gradient. Tento teplotní gradient způsobuje vznik velkého tepelného napětí uvnitř pelety, což následně vede k tvorbě trhlin. Tyto trhliny napomáhají k šíření štěpných plynů při vysoké míře vyhoření paliva. Tvorba trhlin a zvýšený vývin štěpného plynu posléze vede ke značnému snížení odolnosti jaderného paliva. Tato práce se zabývá problematikou zvyšování tepelné vodivosti jaderného paliva na modelu materiálu (CeO2). V této práci jsou studovány podobnosti chování CeO2 a UO2 při konvenčním slinováním a při „spark plasma sintering.“ Způsob jak zvýšit tepelnou vodivost použitý v této práci je včlenění vysoce tepelně vodivého materiálu, karbidu křemíku (SiC), do struktury CeO2 pelet. Od karbidu křemíku je očekáváno, že zvýší tok tepla z jádra pelety, a tím zvýší tepelnou vodivost CeO2. V této práci je také porovnávána podobnost chování SiC v CeO2 matrici s chováním SiC v UO2, které bylo popsáno v literatuře.
Preparation of quasicrystals Al-Cu-Fe by mechanical alloying and SPS
Novák, P. ; Kubatík, Tomáš František ; Hendrych, R. ; Voděrová, M. ; Vojtěch, D.
This work deals with the preparation of fine-grained material based on quasicrystalline phase of Al-Fe-Cu powder metallurgy using mechanical alloying and compaction method "Spark Plasma Sintering". Described the dependence of the microstructure and phase composition of powders depending on the conditions of the mechanical alloying. It was studied the stability of the quasicrystalline phase at various temperatures and times of compacting
THERMAL AND MECHANICAL PROPERTIES OF TUNGSTEN COMPACTS PREPARED BY SPS
Nevrlá, Barbara ; Vilémová, Monika ; Matějíček, Jiří
Tungsten is a promising candidate material for use in the tokamak device aimed at future production of nuclear fusion power. Here, tungsten is intended for the application in the part called first wall,with the function of a heat-resistant plasma facing armor.In the present work,two fractions of tungsten powder (2 and 4 μm) were used to prepare two consolidated samples by spark plasma sintering (SPS),using a combination of pressure,temperature and electric power.This sintering technique produces samples of near theoretical density which is positive for the application.Tungsten compacts were then studied to determine some basic thermal and mechanical properties, namely thermal conductivity using the laser-flash method and hardness by Vickers test.The measurements were focused on thermal conductivity of the compacts because high thermal conductivity is crucial for the material of tokamak first wall,loaded by high heat flux from the plasma.High hardness is desirable for good resistance
Silicon carbide for chemical application prepared by SPS method
Brožek, Vlastimil ; Kubatík, Tomáš František ; Vilémová, Monika ; Mušálek, Radek ; Mastný, L.
Silicon carbide discovered more than 121 years ago has a wide usage in the mechanical engineering industry as well as in electrical engineering.It is an excellent abrasive medium as well as a construction material with high resistance to mechanical and chemical deterioration.Under standard condition, silicon carbide has no melting point (decomposes at 2700 °C – principle used for industrial production of silicon),thus the bulk form must be prepared in a composite form with a metallic, ceramic or polymer binder. This method is suitable for tailoring of mechanical properties; nevertheless,it does not produce SiC form applicable for laboratory purposes.Binder-free sintering of SiC is practically impossible, despite decreased chemical resistivity of the produced material. Pure SiC is insoluble in all acids except hydrofluoric acid.Reaction of SiC with HF is enabled only due to residual SiO2 created during the industrial production.However, SiO2 located between the planes of growth of SiC

National Repository of Grey Literature : 66 records found   beginprevious54 - 63next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.