National Repository of Grey Literature 72 records found  beginprevious33 - 42nextend  jump to record: Search took 0.01 seconds. 
Metabolic control of bacterial division.
Valtová, Aneta ; Lichá, Irena (advisor) ; Fišer, Radovan (referee)
Metabolic control of cell cycle has been study for a long time, but it is not completely known. Mechanisms of metabolic control described for a several decade has been explained on molecular level with using a modern methods. Regulation of cell cycle in consideration of metabolism and nutritional status is going on at the several level of cell replication. The most known is about assembly of bacterial cell divisiome. Changes in nutrient availability induce stress response that use low-molecular substances in signaling pathways leading to changes in the cell cycle. One of the most studied is (p)ppGpp that participates in stringent response and affect sigma factors, directly inhibits the initiation of replication by binding to the DnaG primase and indirectly inhibits the elongation of replication. Current researches has revealed that some enzymes with already known enzymatic function in the major metabolic pathways (glycolysis or TCA) also has a function as sensors that transmit the nutritional change signal directly into the cell dividing process. These signals most often inhibits FtsZ protein or affect its helper proteins and subsequent ring formation. Analogues of these enzymes were found in gram-positive (Bacillus subtilis) and gram-negative bacteria (Escherichia coli, Caulobacter crescentus)....
Role of Smarca5 (Snf2h) chromation remodeling ATPase in hematopoitic development and erythropoiesis
Kokavec, Juraj ; Stopka, Tomáš (advisor) ; Divoký, Vladimír (referee) ; Kořínek, Vladimír (referee)
The Imitation Switch (ISWI) nuclear ATPase Smarca5 (Snf2h) is one of the most conserved chromatin remodeling factors. It exists in a variety of oligosubunit complexes that move DNA with respect to the histone octamer to generate regularly spaced nucleosomal arrays. Smarca5 interacts with different accessory proteins and represents a molecular motor for DNA replication, repair and transcription. We deleted Smarca5 at the onset of definitive hematopoiesis (Vav1-iCre) and observed that animals die during late fetal development due to anemia. Hematopoietic stem and progenitor cells (HSPCs) accumulated but their maturation towards erythroid and myeloid lineages was inhibited. Proerythroblasts were dysplastic while basophilic erythroblasts were blocked in G2/M and depleted. Smarca5 deficiency led to increased p53 levels, its activation at two residues, one associated with DNA damage (S-18) second with CBP/p300 (K376Ac), and finally activation of the p53 targets. We also deleted Smarca5 in committed erythroid cells (Epor-iCre) and observed that animals were anemic postnatally. Furthermore, 4- OHT-mediated deletion of Smarca5 in the ex vivo cultures confirmed its requirement for erythroid cell proliferation. Thus, Smarca5 plays indispensable roles during early hematopoiesis and erythropoiesis.
Role of intestinal circadian clock in epithelial transport, proliferation, and tumourigenesis
Soták, Matúš
AABBSSTTRRAACCTT The molecular circadian clock enables anticipation of environmental changes. In mammals, clocks are ubiquitously present in almost all tissues and they are comprised of transcriptional-translational feedback loops of the so-called clock genes. The central clock represents the intrinsic pacemaker which is located in suprachiasmatic nuclei (SCN) of hypothalamus and synchronizes peripheral clocks. Clockwork system in alimentary tract and its regulatory link to intestinal functions are poorly understood. Therefore the objective of the thesis was to characterize molecular clock in particular parts of the rat intestine and to elucidate its link to the intestinal transport, regulation of cell cycle and neoplastic transformation in colonic tissue. We used quantitative RT-PCR (qPCR) to determine circadian profiles of mRNA expression of clock genes in the epithelium of duodenum, jejunum, ileum, and colon of rat. Furthermore, we analysed the expression of genes coding sodium chloride transporters and channels as well as cell cycle regulators in colon. To focus more precisely on different structures of intestinal epithelia we used laser capture microdissection. In addition, we performed Ussing chamber measurements to determine the colonic electrogenic transport. To study the contribution of circadian...
CIrcadian regulation of miRNA and clock-controlled genes in tumorigenesis
Balounová, Kateřina ; Pácha, Jiří (advisor) ; Bendová, Zdeňka (referee)
The circadian clock generates circadian rhythms, which participate on regulation of a number of signalling pathways. Disruption of the circadian regulatory mechanism is linked to a development and a progression of certain types of cancer including colorectal tumorigenesis. Progression of tumorigenesis depends on the cell cycle machinery related to cell proliferation and apoptosis. MiRNAs play a role in initiation and progression of tumorigenesis because they interfere in regulatory pathways associated with tumorigenesis. The aim of the thesis was to determinate existence of circadian rhytms in clock controlled genes (Tef, Dbp), miRNAs (miR-1-3p, miR-16-5p, miR-34a-5p, miR-155-5p, miR-192-3p) and genes of the cell cycle machinery (Ccnd1, Ccne1, Ccna1, Ccnb1) and apoptosis (Casp3, Bcl2, Bad). Further, to compare detected circadian rhythms during aging and neoplastic transformation of colon by quantitative RT-PCR. We have observed circadian expression of Tef, Dbp, Ccne1, Ccna1, Ccnb1, Casp3 and Bcl2 in young mice colon, Tef, Dbp, miR-1-3p, Ccne1, Ccna1 in old mice colon and Tef and Dbp in colorectal tumors. In summary, circadian expression of clock controlled genes varied but was maintained in mice colorectal tumors. In aging we demonstrated weakening of circadian rhythms of the genes of the cell...
Cytokinines and their role in plant cell division, with accent on G2/M transition
Prášilová, Jana ; Ševčíková, Hana (advisor) ; Bíšová, Kateřina (referee)
The eukaryotic cell cycle is well understood mainly in yeasts and animals. Basic regulatory mechanisms, with cyclin-dependent kinases (CDKs) playing crucial roles, are similar in all eukaryotes including plants. CDKs operate mainly at the key cell cycle checkpoints, G1/S and G2/M. Phosphorylation and dephosphorylation of CDKs by kinases and phosphatases have both negative and positive effect. Negative regulator at the G2/M transition is WEE1 kinase which phosphorylates conserved amino acid residues T14 and Y15 of CDK. Phosphatase CDC25 removes this inhibitory phosphate in yeasts and animals and forces cells into mitosis. Plant cell cycle exhibits remarkable differences. Importantly, it is controlled by phytohormones, and some key points of regulation remain obscure - a functional plant homologue of yeast CDC25 phosphatase has not been found in plants yet though Y15 inhibitory phosphorylation by WEE1 kinase blocks mitosis entry in plants as well. Thus, the regulatory mechanism of G2/M transition in plant cells is still to be found. Phytohormones play a key role, not only in the plant cell cycle, but in whole plant development. Interplay between the two groups of phytohormones: auxins and cytokinins, is crucial. Especially cytokinins significantly influence the regulation of G2/M checkpoint. It is...
Molecular mechanisms of G2/M checkpoint regulation
Kořínková, Klára ; Macůrek, Libor (advisor) ; Forman, Martin (referee)
Cell division is necessary for maintaining tissue homoeostasis, but at the same time its defects are closely related to the development of many diseases including cancer and premature ageing. Activation of oncogenes leads to replication stress and directly threatens genome stability. The right control of transition between interphase and mitosis is an important mechanism for the protection of genome integrity. Nuclear division is only possible with those cells in which flawless duplication of genetic information occurred. By contrast, cells with damaged DNA structure remain temporarily or permanently stopped at G2 phase of the cell cycle. The topic of this thesis is a detailed literature overview with the subject of molecular mechanisms of the G2/M transition regulation under unperturbed conditions and in the presence of damaged DNA.
The relationship between circadian system and cell cycle
Vrtílková, Andrea ; Bendová, Zdeňka (advisor) ; Fárková, Eva (referee)
The circadian system is able to oscillate by itself owing to the transcriptional-translation feedback loop. Components of this loop do not affect just their own run, but they also have an impact on some other functions of the cell, for example cell cycle. This interaction is made by clock proteins (PER, CRY etc.) and by clock-controlled proteins (WEE1, TIM, XPA etc.). These proteins participate in the cell cycle run and have an impact on check-points. Disruption of the circadian clock can cause faults in cell cycle check-points, storing of DNA damages and increased cell apoptosis or tumor progression. Key words: circadian systém, cell cycle, WEE1, XPA, P21, C-Myc, TIM, PER
Role of Polo-like kinases in the cell cycle and DNA damage response
Kudláčková, Radmila ; Macůrek, Libor (advisor) ; Šolc, Petr (referee)
Within the process of cell division, genetic material must be equally distributed between the two daughter cells. In the next phase, the missing portion of the genome must be synthesized. The entire cycle is regulated by cyclin-dependent kinases (Cdks) in cooperation with cyclins. If the DNA is damaged during the cell cycle, signaling pathways of checkpoints supress cycle progression and enforce the cell cycle arrest until the damage is repaired. Malfunction of the checkpoints results in tumorigenesis. Polo-like kinases (Plks) are, much like Cdks, important regulators of the cell cycle. Plks play significant role mainly in the mitosis and also in a response to the DNA damage. This thesis is focused on human homologues, nevertheless conservation of homologues among organisms is considerable, thus presented findings are of general relevance. Human cells express five proteins from the family of Polo-like kinases, from which Plk1 corresponds to Polo-like kinases of lower eukaryotes. Knowledge on the remaining four kinases is still on the rise.
Role of intestinal circadian clock in epithelial transport, proliferation, and tumourigenesis
Soták, Matúš ; Pácha, Jiří (advisor) ; Bendová, Zdeňka (referee) ; Herichová, Iveta (referee)
AABBSSTTRRAACCTT The molecular circadian clock enables anticipation of environmental changes. In mammals, clocks are ubiquitously present in almost all tissues and they are comprised of transcriptional-translational feedback loops of the so-called clock genes. The central clock represents the intrinsic pacemaker which is located in suprachiasmatic nuclei (SCN) of hypothalamus and synchronizes peripheral clocks. Clockwork system in alimentary tract and its regulatory link to intestinal functions are poorly understood. Therefore the objective of the thesis was to characterize molecular clock in particular parts of the rat intestine and to elucidate its link to the intestinal transport, regulation of cell cycle and neoplastic transformation in colonic tissue. We used quantitative RT-PCR (qPCR) to determine circadian profiles of mRNA expression of clock genes in the epithelium of duodenum, jejunum, ileum, and colon of rat. Furthermore, we analysed the expression of genes coding sodium chloride transporters and channels as well as cell cycle regulators in colon. To focus more precisely on different structures of intestinal epithelia we used laser capture microdissection. In addition, we performed Ussing chamber measurements to determine the colonic electrogenic transport. To study the contribution of circadian...

National Repository of Grey Literature : 72 records found   beginprevious33 - 42nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.