National Repository of Grey Literature 62 records found  beginprevious31 - 40nextend  jump to record: Search took 0.00 seconds. 
Utilization of chemical cross-linking for studying intermediate filaments organization
Dlabolová, Lada ; Novák, Petr (advisor) ; Sabó, Ján (referee)
Intermediate filaments are cytoskeleton components formed by a large family of fibrous proteins specifically expressed in nearly all differentiated cells. Under physiological conditions, they spontaneously assemble into fibers in a process that involves several stages in the organization of subunits. These fibers provide elastic properties to the cells, allowing them to maintain their structural and mechanical integrity. While the structure of other cytoskeletal components is now well researched, detailed information on the structure of intermediate filaments at various stages of assembly is still not available. Thus, new insights into the structure of these proteins could be of great benefit in understanding of various pathological mechanisms associated with changes in their expression in cells. This thesis studies interactions of dimeric subunits in the tetrameric assembly of vimentin, class III protein of intermediate filaments. By chemical cross-linking of isotopically labeled and unlabeled tetrameric vimentin mixture, followed by proteolytic cleavage and mass spectrometry analysis, interdimeric, intradimeric and intrapeptide cross-linking products were identified. Quantification yielded information on interdimeric and intradimeric distance constraints, which allow the characterization of a...
Mechanisms of Microtubules Dynamics and Nucleation in a Plant Cell
Mauerová, Zdeňka ; Schwarzerová, Kateřina (advisor) ; Žárský, Viktor (referee)
Nucleation of microtubules co-determines organization of this cytoskeleton component in cells and makes a significant contribution to shaping its dynamics. In plant cells, micro- tubules are mainly nucleated on preexisting ones and nucleation takes place in the cortex and also within the mitotic spindle and the fragmoplast. Recruiting the γTuRC, a pre- served universal nucleator, to the wall of microtubules is provided by augmin in cooperation with NEDD1/GCP-WD. The function of the γTuRC is at least in the case of nucleation in the spindle, but apparently in other situations as well further enhanced by XMAP215/MOR1, which raises efficiency of the γTuRC through its own polymerization activity, and TPX2, or its homologs, which for one thing, directly activates the complex and for another, locally increases concentration of tubulins by forming condensate with them, which also augments the probability of success of nucleation. Not much is known about regulatory pathways controlling this process, with the exception of the TTP complex, which is functional in the cortex. Overall, knowledge covering nucleation in plants is rather meager and information concerning the molecular mechanisms of functioning of mentioned factors comes mainly from research in animals. Keywords augmin, cytoskeleton, γTuRC,...
MAP code and regulation of microtubule-based processes
Karhanová, Adéla ; Lánský, Zdeněk (advisor) ; Tomášová, Štěpánka (referee)
Microtubule associated proteins (MAPs) are considered as key regulators of molecular trafficking in cells. Even though their malfunctioning results in severe pathologies, such as neurodegenerative disorders, the regulatory roles of these proteins remain under debate. Since MAPs bind to the cytoskeleton, this structure has to be vital for the function of MAPs. Microtubules, a highly dynamic type of cytoskeletal structure, have been given extra attention due to their association with cell division and vital functions in neurons. Microtubules can undergo post-translational modifications that affect molecular motors as well as binding of other proteins, such as MAPs. Whether post-translational modifications of microtubules regulate the distribution of MAPs is so far not sufficiently documented. However, MAPs have been shown to cooperatively form cohesive envelopes on the microtubules and thereby regulate the access of motors and severing enzymes. As there are many types of MAPs and they are mutually exclusive, a hypothesis of a regulatory 'MAP code' emerged recently in the literature. Using available literature, this review will try to introduce the new model of MAP code and provide some background information on previous research on this topic.
The role of PKN family kinases in cancer
Novotná, Petra ; Rösel, Daniel (advisor) ; Ramaniuk, Volha (referee)
This bachelor thesis is focused on the PKN family of Ser/Thr kinases. This family includes three isoforms PKN1, PKN2 and PKN3. Especially it deals with the kinase PKN3 in more detail. These are kinases related to protein kinase C, belonging to the AGC superfamily. PKN kinases are activated via small G proteins of the Rho GTPase family or unsaturated fatty acids. PKN kinases are involved in many cellular processes, such as the regulation of cytoskeletal rearrangements, affect cell adhesion, cell movement, embryonic development and the cell cycle. Expression of PKN3 is particularly increased in cancer cells but is only present in small amounts in normal body cells. Therefore, PKN3 appears to be a very interesting therapeutic target for the treatment of cancer. Studies have shown that PKN3 has a significant effect on the motility of cancer cells, thus contributing to their migration and ability to form metastases.
The role of anillin in the growth cone of neurons
Tomášová, Štěpánka ; Libusová, Lenka (advisor) ; Vinopal, Stanislav (referee)
During embryonal development, axons of newly differentiated neurons need to properly interconnect and create a functional neuronal network. To achieve this, the cell requires a growth cone. The growth cone is a highly dynamic structure at the end of growing axons that serves both as the navigator and the propeller. Crosstalk between actin and microtubules is vital for proper axonal pathfinding. But the exact mechanism of this cooperation remains unknown. This diploma thesis investigates the possible role of a candidate scaffolding protein called anillin in this process. Anillin has been studied in two human cell lines. SH-SY5Y neuroblastoma cell line was used for overexpression and siRNA knock-down experiments. Anillin overexpression led to perturbed neurite morphology and growth cone dynamics in SH-SY5Y cells, whereas cells with lower anillin expression had fewer neurites. Next, neurons differentiated from human iPSC (induced pluripotent stem cells) expressing endogenous fluorescently tagged anillin were studied. Local dynamic high concentration spots of anillin have been observed at the base of cell protrusions of differentiating neurons. These anillin flares appeared during cell migration, early neurite initiation, and in newly created growth cones. These results suggest that anillin plays a...
Regulation of microtubule dynamics revealed by single-molecule TIRF and IRM microscopy
Zhernov, Ilia ; Lánský, Zdeněk (advisor) ; Cifra, Michal (referee) ; Varga, Vladimír (referee)
The microtubular cytoskeleton is a ubiquitous and highly diverse biopolymer network present in all eukaryotic cells. Microtubules stochastically alternate between phases of growth and shrinkage. Cells take advantage of this dynamicity to generate forces for essential processes, such as cell division, motility or morphogenesis. Regulating the microtubule dynamics enables cells to adaptively respond to a wide range of tasks and conditions. Molecular mechanisms underpinning the regulation are not fully understood. Using a bottom-up approach and the combination of single molecule total internal reflection fluorescence (TIRF) microscopy and interference reflection microscopy (IRM), we here reconstituted and explored two dynamic cytoskeletal systems. (i) Microtubule doublets, comprising incomplete B-microtubule on the surface of a complete A- microtubule, provide an essential structural scaffold for flagella. Despite the fundamental role of microtubule doublets, the molecular mechanism governing their formation is unknown. We here demonstrate an inhibitory role of tubulin C-terminus in microtubule doublet assembly. By partial enzymatic digestion of polymerized microtubules followed by the addition of free tubulin in the presence of a stabilizing agent, we assembled microtubule doublets and revealed the B-...
Protein composition of the cytoskeleton of protists
Švagr, Eva ; Hampl, Vladimír (advisor) ; Pánek, Tomáš (referee)
While we have a good understanding of the roles of actin and tubulin filaments in the cell cytoskeleton, intermediate filaments (IFs) are often overlooked. However, the importance of IFs becomes quite apparent, as proteins similar to IF proteins have been identified in many protist cells. This holds particularly for the cells of protists, where even the functions of some members of the of actin and tubulin superfamilies remain unclear. Intermediate filaments are still not well established as components of protist cytoskeletons, in contrast to their more thoroughly studied counterparts in Metazoa. Protist and metazoan IF proteins are dissimilar in their sequence; however, they share similarities in structure, and they assemble autonomously into analogous filaments. IF-like proteins have been localized to striated fibers or unique cytoskeletal components in several organisms, even though not much is known about the protein composition of these striated fibers to date. This suggests that IF-like proteins might be a universally present component of these striated fibers often seen in protist cells. Keywords: Protists, cytoskeleton, microtubules, microfilaments, intermediate filaments, fibrils, protein composition
Evolutionary-developmental study of membrane proteins
Vosolsobě, Stanislav ; Schwarzerová, Kateřina (advisor) ; Baluška, František (referee) ; Štorchová, Helena (referee)
Evolutionary-developmental study of membrane proteins Mgr. Stanislav Vosolsobě Abstract Using a plethora of experimental approaches for phylogenetical and functional study on several membrane signalling proteins, I brought new evidences supporting a hypothesis that the molecular evolution of protein families is a highly dynamic, not conservative, process. In DREPP family of calcium-binding peripherally-associated plasma-membrane proteins I found a broad flexibility in protein-membrane binding manners coupled with a many independent duplication of this Euphyllophyta-clade specific plant gene. In three families of auxin transporting proteins, PIN-FORMED, LAX and PILS, I showed that emergences of these proteins are uncorrelated and placed on different levels of the plant kingdom phylogenetic tree. However these proteins ensure very fundamental plant morphogenetic processes, like cell differentiation, organ formation or tropisms, with strong effects of their deleterious mutations, I found many gene radiations and losses on a all taxonomic levels in these families, evidencing that key and shared physiological processes may be realised by genes touched by a recently undergoing evolution. Evolutionary-developmental synthesis of a functional and phylogenetic data must be done with caution due to high risk of...
Molecular mechanism of mechanoreception in plants
Jelínková, Barbora ; Martinek, Jan (advisor) ; Fendrych, Matyáš (referee)
Plant, as sedentary organism, does not have many possibilities to physically escape it's unpleasant surroundings, instead it adapts oneself. One of many plant senses that are crucial for tracking environment changes is mechanoreception. Plant senses and differentiates between many mechanical cues, some of them affecting plant immunity and morphogenesis. The whole plant cell reacts to mechanical cues and many cellular structures are involved in mechanoreception. Any change in cell wall - a borderline between the cell and it's surroundings - is transduced to plasma membrane, then to the cytoskeleton and potentially to other structures. Concept of this cell wall-plasma membrane-cytoskeleton continuum and it's use as an instrument to illuminate molecular mechanisms of mechanoreception in plants are the key topics of my thesis.
Interakce viru klíšťové encefalitidy s cytoskeletem hostitelských buněk
PRANČLOVÁ, Veronika
This thesis is focused on the role of host cytoskeleton, primarily microtubules and microfilaments, during tick-borne encephalitis virus infection in human neuroblastoma cell line SK-N-SH and tick cell line IRE/CTVM19. The importance of cytoskeletal integrity and dynamics to the viral replication cycle were examined using specific chemical inhibitors showing the virus utilizes studied structures in both cell lines. Immunofluorescence microscopy revealed structural changes in the actin cytoskeleton during late infection in SK-N-SH cells. Moreover, differences in expression of cytoskeleton-associated genes in both cell lines were compared. Several genes with up-regulated expression in SK-N-SH cells were identified during late infection.

National Repository of Grey Literature : 62 records found   beginprevious31 - 40nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.