National Repository of Grey Literature 116 records found  beginprevious31 - 40nextend  jump to record: Search took 0.00 seconds. 
Design of injection molding cooling insert for manufacturing by Selective Laser Melting
Tekeľ, Richard Martin ; Vrána, Radek (referee) ; Koutný, Daniel (advisor)
This bachelor thesis focus on design of a cooling insert so the current mold cycle time will be reduced and it will be possible to manufacture the insert by SLM. Proposed modification includes 1 cooling line with non-circular cross section and disrupt empiric cooling line design recommendations. A research into differences of conventional and additive manufacturing of injection moulding inserts was conducted as well as into theoretical principles needed for a design of cooling lines and preview of similar solutions for the given task. After simulation of current state and obtaining a value of current cycle time, 3 different designs of cooling line were chosen and simulated in order to pick the most suitable one. This cooling design was afterwards modified to get conformal shape and lower distance from critical spot. The last part of thesis interpret the results from simulation of the final cooling line design and estimation of safety against fatigue failure.
Development of process parameters of Selective laser melting technology for the production of thin-walled iron parts
Šreibr, Vít ; Dočekalová, Kateřina (referee) ; Paloušek, David (advisor)
The thesis deals with the processing of pure iron by Selective laser melting technology as a material with good electromagnetic properties. The main area is the optimization of the production of thin-walled samples, which monitor the influence of process parameters on the thickness and quality of the wall surfaces. In addition to the perpendicular walls, walls built at an angle of 45° are also examined. Another phase of the thesis is the determination of process parameters for bulk bodies to achieve the lowest porosity and high surface quality. An important part of the research is the application of acquired knowledge in the production of samples designed to test magnetic properties as well as part for a specific application. These considerations concern not only the setting of the printing parameters, but also the heat treatment and its influence on the magnetic and mechanical properties of the material. Mechanical properties were determined by tensile tests and hardness tests. All samples were made on a SLM 280HL using a 400W ytterbium laser.
Processing of alloy 2618 using selective laser melting technology
Dokoupil, Filip ; Hutař, Pavel (referee) ; Paloušek, David (advisor)
This diploma thesis deals with finding and verification of appropriate technological parameters of SLM technology for the processing of aluminum alloy 2618. In the theoretical part, an introduction to additive manufacturing of aluminum alloys and general description of processes occurring during SLM production is given. Based on general knowledge were designed different types of testing samples produced by sintering the metallurgical powder using 400 W ytterbium fiber laser, which so far in the literature for aluminum alloy 2618 were not described. As the result, the technological parameters dependence on relative density and the detailed overview of the 2618 alloy processing by SLM technology is determined.
Manipulator design for transport of SLM technology platforms
Železník, Tomáš ; Malý, Martin (referee) ; Koutný, Daniel (advisor)
The aim of the thesis is to design a manipulator for platforms from the machine SLM 280 HL, which is used in the laboratory of the Institude of Design. The manipulator will be used for transportation the platforms with a part from the machine into the tempering furnance. At the same time, the manipulator ensures safe removal of the platform from the machine so the machine and the part are not damaged. A special tool mounted on the platform is used for removing it. Thesis includes computational verification of dangerous places on the construction, manipulator stability and costs.
Design of topologically optimized upright for pneumobil race car
Mende, Milan ; Červinek, Ondřej (referee) ; Vaverka, Ondřej (advisor)
This thesis deals with the design of lightweight front uprights of pneumobile Javelin using topology optimization, followed by manufacturing by additive technology Selective Laser Melting. Aluminium alloy AlSi10Mg was used. Topology optimized parts should have met the requirement of minimal safety factor equal to 2, therefore the stress strain analysis was performed using FEM. The maximal deformation was determined and the safety factor obtained. Two unsymmetrical uprights were designed due to parameters of the brake system. The precision of manufacturing was verified by optical digitization. Machined uprights were mounted on the pneumobile and tested directly on the vehicle. No limit states were observed during testing and subsequent races, so they proved to be fully functional. Weight of the left upright was reduced from 1 609 g to 758 g, the right one was lightened to 741 g.
The developement of SLM laser strategy for lattice structure fabrication
Jaroš, Jan ; Dočekalová, Kateřina (referee) ; Vrána, Radek (advisor)
Additive technology (AT) is increasingly used to design unique parts, mainly due to the ability to produce complex structures such as lattice structures. However, this also includes the need to modify the process parameters or the production strategy of the AT, which is usually set to produce volume geometry. Using samples corresponding to the geometries of the lattice structures, the exact input values were measured, which were used to design the SLM (Selective laser melting) production process using a contour strategy. Thanks to this, vertical and angled (35.26°) struts with low porosity (up to 0.2 %), low surface roughness and high dimensional accuracy were produced. Porosity was measured on µCT, surface roughness and dimensional accuracy were measured on STL data. The results show that if the parameters of the SLM process are set correctly, it is possible to produce struts with low porosity and surface roughness using different combinations of laser power and scanning speed. The above findings were used in the creation of script that allow the selection of suitable process parameters to produce lattice structures.
Processing of high-strength aluminum alloy EN AW 7075 using SLM technology
Skalický, Petr ; Hudák, Radovan (referee) ; Koutný, Daniel (advisor)
This diploma thesis deals with processing of high strength aluminum alloy EN AW 7075 by Selective Laser Melting and verify the influence of process parameters on relative density and mechanical properties. The theoretical part contains an introduction to additive manufacturing of aluminum alloys, the influence of process parameters and description of processes occuring during SLM production. Based on the theoretical part were prepared experiments and method of evaluation. Samples were produced by melting metallurgical powder using ytterbium laser with a maximum output power of 400 W. This diploma thesis also describes the formation and growth of cracks inside the material, which so far in the literature for alloy EN AW 7075 were not described. As the result, the process parameters dependence on the relative density and an overview of this aluminum alloy processing by SLM technology is determined.
Processing of magnesium alloys using selective laser melting
Kaščák, Pavol ; Paloušek, David (referee) ; Suchý, Jan (advisor)
The processing of magnesium-based materials with Selective laser melting technology is due to its high reactivity in the initial stages of development. This bachelor thesis deals with the elucidation of impacts of individual process parameters in processing of magnesium alloys on the resulting material porosity. The aim is to develop initial experiments for the shift in the processing of magnesium alloys by additive technologies. The theoretical part contains an insight into the SLM technology and an overview of the current state of knowledge of processing of magnesium alloys by this technology. By the analysis of the theoretical part, the main volume test of this thesis has been designed. The selected material for this test was the biodegradable magnesium alloy WE43. According to the author's knowledge, no research has been published on this alloy so far. Based on the results of the experiment, the dependencies of the individual process parameters were made on the resulting relative density of the samples. At the end, the outputs were compared with the literature.
Development of processing strategy for manufacturing of tubes using metal additive manufacturing
Zemek, Albert ; Zemanová, Lucie (referee) ; Koutný, Daniel (advisor)
This bachelor´s thesis is focused on finding a suitable process parameters for building an overhanging parts without need of any support structure in Selective Laser Melting process. The main focus is on fabrication of circular parts, which are often used in the industry. In this paper, there were designed test specimens for different process parameters. Also a novel function for nonconstant process parameters was probed. After the fabrication, the specimens were tested in order to evaluate their dimension accuracy.
Topological optimization and lattice structures for aerospace components
Petržela, Zdeněk ; Hutař, Pavel (referee) ; Paloušek, David (advisor)
Low product weight in combination with high mechanical properties play a crucial role in reducing operating costs in the aerospace industry. For this purpose, topology optimization and lattice structures are used. Additive manufacturing processes enable the production of optimized parts with geometric complexity. So far, no clear and comprehensive approach for designing a machine part with reduced weight in this way has been presented. The aim of this work was to map the topology optimization process with the use of lattice structures, corrected by experimentally determined production limits. Furthermore, the work deals with the implementation of the proposed methodology in optimization of a real machine part, its production from AlSi10Mg metal powder using selective laser melting technology, and verification of its manufacturing accuracy and vibration response. To determine the production limits, a series of lattice strut tests were performed. According to dimensional, weight and porosity analysis of lattice struts, a minimum applicable cross-section of the strut was chosen. Struts with this cross-section were subsequently applied into the beam samples with the BCC and BCCz lattice structure. Based on the mechanical response, the BCCz lattice structure was selected for application in the optimized part. For a more accurate mechanical behaviour prediction, based on actual lattice structure response, corrected elasticity modulus and yield strength value for BCCz lattice type were determined. These parameters were applied into FEM simulation in the lattice optimization phase. After solving the problem of lattice structure geometry export from FEM software, the optimization methodology could be completely defined, the part was manufactured, and the design potential was verified.

National Repository of Grey Literature : 116 records found   beginprevious31 - 40nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.